Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 35255       
Year : 2019  |  Volume : 149  |  Issue : 2  |  Page : 146-150

Mismatch amplification mutation assay-polymerase chain reaction: A method of detecting fluoroquinolone resistance mechanism in bacterial pathogens

1 Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
2 Department of Microbiology, Madras Medical Mission, Chennai, India
3 Nitte University Centre for Science Education & Research, Mangaluru, India

Correspondence Address:
Dr Indrani Karunasagar
Nitte University Centre for Science Education & Research, Kotekar-Beeri Road, Paneer Campus, Derelakatte, Mangaluru 575 018, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijmr.IJMR_2091_17

Rights and Permissions

The mismatch amplification assay is a modified version of polymerase chain reaction (PCR) that permits specific amplification of gene sequences with single base pair change. The basis of the technique relies on primer designing. The single nucleotide mismatch at the 3' proximity of the reverse oligonucleotide primer makes Taq DNA polymerase unable to carry out extension process. Thus, the primers produce a PCR fragment in the wild type, whereas it is not possible to yield a product with a mutation at the site covered by the mismatch positions on the mismatch amplification mutation assay (MAMA) primer from any gene. The technique offers several advantages over other molecular methods, such as PCR-restriction fragment length polymorphism (RFLP) and oligonucleotide hybridization, which is routinely used in the detection of known point mutations. Since multiple point mutations in the quinolone resistance determining region play a major role in high-level fluoroquinolone resistance in Gram-negative bacteria, the MAMA-PCR technique is preferred for detecting these mutations over PCR-RFLP and sequencing technology.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded416    
    Comments [Add]    
    Cited by others 1    

Recommend this journal