Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 3676       

   Table of Contents      
Year : 2018  |  Volume : 148  |  Issue : 3  |  Page : 349-350

Authors' Response

1 Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India
2 Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India

Date of Submission07-Aug-2018
Date of Web Publication13-Nov-2018

Correspondence Address:
Vikas Gautam
Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-5916.245302

Rights and Permissions

How to cite this article:
Shafiq N, Gautam V, Pandey A K, Kaur N, Garg S, Negi H, Kaur S, Ray P, Malhotra S. Authors' Response. Indian J Med Res 2018;148:349-50

How to cite this URL:
Shafiq N, Gautam V, Pandey A K, Kaur N, Garg S, Negi H, Kaur S, Ray P, Malhotra S. Authors' Response. Indian J Med Res [serial online] 2018 [cited 2020 Oct 30];148:349-50. Available from:

We appreciate the interest shown by Birajdar et al[1] in our meta-analysis[2]. They acknowledge that such meta-analyses are of considerable importance in guiding policy. In fact, it was driven by a question which arose during antimicrobial stewardship activities, i.e., significance of procalcitonin based decision in different settings within a hospital.

For the first point raised by Birajdar et al[1] wherein they say that only one study was available for ward setting and hence was not amenable to meta-analyses, we could agree no less. However, readers would know that RevMan, the software used for the meta-analyses represents the data for subgroup analyses, whether or not data have been pooled for the subgroup. It can easily be deciphered from the Forest plot [Figure 2][2], the confidence interval was the same as that shown in the individual study. The data for this single study, however, need to be entered and depicted to enable overall pooling which is represented at the end of the [Figure 1] In fact, deleting this information would not only have flawed meta-analysis but also rendered the Forest plot incomplete. However, one does conclude that more ward based studies need to be done.

The reason for difference in the number of studies for different outcomes was because not all studies reported this outcome. This again, is more of a norm than exception. As regards to the method of quality assessment, the authors need to refer to the section on Quality Assessment[2] wherein the method has been referenced and explained briefly.

Heterogeneity was assessed and wherever it was significant, appropriate model was used. The details of the same could have been added in the methods section. However, we thought that the Forest Plots would be self explanatory.

Sensitivity analyses based on the putative causes of heterogeneity were not planned a priori and was not presented in the paper. However, the suspected reasons for clinical heterogeneity have been commented upon in the discussion section[2]. As far as meta-regression is concerned we would have needed to specifically address a factor or a set of factors for seeing impact on outcome. For our current analysis we did not undertake meta-regression knowing the shortcomings of post-hoc selection of variables[3]. It would be interesting to see someone undertake this exercise.

Birajdar et al[1] referred to two meta-analyses with stricter inclusion criteria[4],[5]. One of these[4] was available at the time of submission of our meta-analysis and was referenced. The other one[5] was published later. In the latter meta-analysis[5], within critically ill patients, the focus of infection has been specified or not specified. There are more specific examples, which readers may have referred to. Studies with tighter inclusion criteria would affect heterogeneity favourably. Our meta-analysis was directed towards a very pragmatic decision making exercise during management in a hospital settings. Infections of various kinds are addressed in emergency, wards and intensive care units.

Regarding the Table of all included studies, we would agree as it is an important aspect of the study. However, in the past, we have had the experience of having been asked to either delete it or present it as an appendix as the journals are hard pressed for space. We have given the reference of the included studies.

Regarding the conclusive remark regarding challenge of ‘lumping and splitting studies for meta-analysis’, Ioannidis et al[6] who used these term explained at length the “difference in opinion of reviewers” to be an important determinant of whether to pool or not pool the data. In fact they made a case for pooling the data using appropriate methodology in case heterogeneity was present[6]. We refrained ourselves from undertaking a meta-analysis when we are convinced any exercise in pooling would be logically and logistically flawed[7].

   References Top

Birajdar AR, Thatte UM, Gogtay N. Procalcitonin-guided antibiotic usage - addressing heterogeneity in meta-analysis. Indian J Med Res 2018; 148 : 348-9.  Back to cited text no. 1
Shafiq N, Gautam V, Pandey AK, Kaur N, Garg S, Negi H, et al. A meta-analysis to assess usefulness of procalcitonin-guided antibiotic usage for decision making. Indian J Med Res 2017; 146 : 576-84.  Back to cited text no. 2
Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med 2002; 21 : 1559-73.  Back to cited text no. 3
Li H, Luo YF, Blackwell TS, Xie CM. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 : 5900-6.  Back to cited text no. 4
Huang HB, Peng JM, Weng L, Wang CY, Jiang W, Du B. Procalcitonin -guided antibiotic therapy in intensive care unit patiens: a systematic review and meta-analysis. Ann Intensive Care 2017; 7 : 114.  Back to cited text no. 5
Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for avoiding meta-analysis in forest plots. BMJ 2008; 336 : 1413-5.  Back to cited text no. 6
Shafiq N, Malhotra S, Gautam V, Kaur H, Kumar P, Dutta S, et al. Evaluation of evidence for pharmacokinetics-pharmacodynamics-based dose optimization of antimicrobials for treating Gram-negative infections in neonates. Indian J Med Res 2017; 145 : 299-316.  Back to cited text no. 7


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article

 Article Access Statistics
    PDF Downloaded139    
    Comments [Add]    

Recommend this journal