Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1972    

   Table of Contents      
Year : 2018  |  Volume : 147  |  Issue : 3  |  Page : 312-314

Creation of monosodium iodoacetate-induced model of osteoarthritis in rabbit knee joint

1 Department of Physiology, Christian Medical College, Vellore, Tamil Nadu, India
2 Department of Orthopaedics; Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
3 Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India

Date of Submission17-Dec-2016
Date of Web Publication18-Jun-2018

Correspondence Address:
P. R. J. V. C. Boopalan
Department of Orthopaedics; Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijmr.IJMR_2004_16

Rights and Permissions

How to cite this article:
Vinod E, Boopalan P, Arumugam S, Sathishkumar S. Creation of monosodium iodoacetate-induced model of osteoarthritis in rabbit knee joint. Indian J Med Res 2018;147:312-4

How to cite this URL:
Vinod E, Boopalan P, Arumugam S, Sathishkumar S. Creation of monosodium iodoacetate-induced model of osteoarthritis in rabbit knee joint. Indian J Med Res [serial online] 2018 [cited 2021 Sep 22];147:312-4. Available from:


Osteoarthritis (OA), commonly known as degenerative joint disease, is the most common type of arthritis. Knee OA is one of the most common disabling diseases [1]. The aetiology of OA is partly known, and the precise pathological mechanism responsible for cartilage loss and degradation is not fully understood. The inability to reproduce an animal model that can simulate both the symptoms and histopathology of knee OA has hampered the understanding of the disease. The rabbit models of knee OA are broadly of two types, namely, mechanical (transection of anterior cruciate ligament in the knee joint [2],[3]) and chemical (intra-articular injection of chymopapain and collagenase [4],[5],[6]). Intra-articular injection of monosodium iodoacetate (MIA) has been described for the creation of OA animal model [2],[3],[7]. Unlike the other models, the stage of OA can be controlled with the MIA by titrating the dose injected intra-articularly. Although this model (chemical model) has been described in rat knees [7],[8],[9],[10], it has not been described in rabbit knees. This study describes the creation of various stages of OA in rabbit knees using titrated doses of MIA.

Approval for this study was obtained from the Institutional Review Board (Christian Medical College, Vellore) and the Institutional Animal Ethics Committee. The study was conducted at the College Animal House Facility and Centre for Stem Cell Research, Christian Medical College, Vellore. The inclusion criteria for the study were as follows: male New Zealand white (NZW) adult rabbits above 7±1 months of age, weighing ≥1.5 kg with normal weight-bearing functions and veterinarian health inspection clearance. From a source population of 15, three adult NZW rabbits (five knees) were randomly selected. The rabbits were monitored closely, maintained at standard conditions and were allowed to move freely with free access to food and water. The duration of the study for the purpose of standardization of the ideal dose for creation of OA in the knee model was over three months (November 2015 to January 2016). The rabbits were anaesthetized using intramuscular (IM) injection of 50 mg/kg ketamine and 4 mg/kg of two per cent xylazine. Under sterile aseptic precautions, a single intra-articular injection of MIA reconstituted in sterile water was given. The dose and reconstitution are shown in [Table 1].
Table 1: Dose of monosodium iodoacetate (MIA) given in rabbit knee joint

Click here to view

Injection meloxicam (0.2 mg/kg) was given subcutaneously for post-procedure analgesia immediately after the procedure and was repeated.

Following sedation, the animals were euthanized with a lethal dose of IM ketamine on the 28th day post-MIA injection. Under sterile conditions, arthrocentesis was performed, where 150 μl of sterile water for injection was injected into the knee joints and synovial fluid was aspirated. The biological sample was immediately stored at −80°C for S100A12 protein analysis. The knee joints were removed, fixed with buffered formalin, decalcified in formic acid and embedded in paraffin. Five-micrometre sections in the transverse plane were prepared and stained with haematoxylin and eosin and safranin O.

Synovial fluid S100A12 is a specific biomarker to diagnose OA and also predict the severity of OA [11],[12],[13]. The level of S100A12 was measured using commercially available rabbit protein S100A12 ELISA kit according to the manufacturer's protocol (MyBioSource, Cusabio, China). OA severity assessment was done using the Osteoarthritis Research Society International (OARSI) OA cartilage histopathology assessment system and expression of synovial fluid S100A12 protein [12],[13],[14],[15]. According to the OARSI OA cartilage histopathological system, the control knee without MIA [Figure A]1 and [Figure A]2, 2.5 mg of MIA/250 μl and 3 mg of MIA/50 μl showed no change. A dose of 4 mg MIA in 50 μl of sterile water in adult rabbit [Figure B]1 and [Figure B]2 showed Grade 1 changes. The changes included an intact surface with focal superficial fibrillations. The chondrocytes, chondron columns were arranged regularly in superficial, mid and deep zones with the tide mark appearing in the mid zone. The subchondral bone showed irregular trabeculae. The 4 mg dose of MIA in 250 μl sterile water showed Grade 3 changes [Figure C]1 and [Figure C]2. The changes included surface discontinuity, difficulty in appreciating superficial and mid zone, deep fibrillations extending into the deep zone, empty lacunae with hypocellularity and disorientation of chondron columns, loss of subchondral bone density and safranin O stain depletion into the lower two-thirds of the cartilage.
Figure 1: Haematoxylin-eosin (A1, B1 and C1) and safranin O (A2, B2 and C2) staining of articular cartilage of rabbit knee, (scale bar=50 μm). A1 and A2 showing normal articular cartilage from control rabbit knee (Grade 0 as per Osteoarthritis Research Society International grading). B1 and B2, 28-day post-injection of 4 mg of monosodium iodoacetate in 50 μl of sterile water showing Grade 1 changes as per Osteoarthritis Research Society International grading. C1 and C2, 28-day post-injection of 4 mg of monosodium iodoacetate in 250 μl of sterile water showing Grade 3 changes as per Osteoarthritis Research Society International grading.

Click here to view

The corresponding synovial fluid analysis of S100A12 protein biomarker showed comparable expression levels. Four milligram MIA in 250 μl showed 4×103-fold expression of S100A12 as compared to control. The other doses of MIA in variable volumes showed results similar to the control joint. Although 4 mg/50 μl showed Grade 1 changes on histology, it did not show S100A12 expression greater than the control levels.

The results obtained in this study showed that the stage of OA in rabbit knee joint could be successfully reproduced by intra-articular injection of MIA. The commonly described animal model of OA involves transection of anterior cruciate ligament in the knee joint (mechanical model) and the ensuing mechanical instability results in cartilage damage [2],[3]. The treatment of the mechanical OA model with cell-based therapy does not address the persistent mechanical instability due to the transaction of cruciate ligament.

In rabbits, the other chemical induced models of knee OA include intra-articular injection of chymopapain and collagenase [4],[5],[6]. In chymopapain-induced OA, the mechanism of cartilage degeneration remains unclear requiring high doses. Collagenase has been reported to show dose-dependent OA changes, but its ability to damage other joint structures such as tendons, ligaments and menisci results in joint instability. The presence of collagenase inhibiting factors in vivo also limits its ability to produce a stable OA model [5]. MIA has been described for creation of OA in the temporomandibular joints of rabbits [2],[3],[7], but not for rabbit knees. Our results showed dose-dependent histopathological changes. This chemical model of MIA-induced OA was dependent both on the dose and the final reconstituted volume used for injection. The volume of vehicle seemed to play a vital role probably by causing a uniform distribution of the chemical, thus increasing its availability to induce the inflammatory changes. Synovial fluid S100A12 protein, which is a specific biomarker to diagnose OA and predict the severity of OA, was also elevated [12].

The limitations of our study included the sample size and minimal volume of retrievable synovial fluid which was just sufficient for protein analysis. Although the number of rabbits used for each arm was less, this pilot study showed that MIA could be used to create an effective model of OA in rabbit knee joints. Further studies can create the stages of OA by titrating the dose based on our preliminary results. This chemical model also offers a rapid and minimally invasive method of creating a rabbit knee model of early OA, a stage in disease condition where targeted research could offer prospective results. In conclusion, intra-articular injection of MIA into rabbit knee joints can be used to create an experimental model of OA. This model can be used to study more about the pathogenesis of OA and develop effective treatment options for the same.

Financial support & sponsorship: This study (Ref: AOTAP15-24) was funded by AO Trauma Asia Pacific Grant, Hong Kong.

Conflicts of Interest: None.

   References Top

Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Insurer and out-of-pocket costs of osteoarthritis in the US: Evidence from national survey data. Arthritis Rheum 2009; 60 : 3546-53.  Back to cited text no. 1
Bendele AM. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 2001; 1 : 363-76.  Back to cited text no. 2
Kim HA, Cheon EJ. Animal model of osteoarthritis. J Rheum Dis 2012; 19 : 239-47.  Back to cited text no. 3
Al-Saffar FJ, Ganabadi S, Yaakub H, Fakurazi S. Collagenase and sodium iodoacetate-induced experimental osteoarthritis model in Sprague Dawley rats. Asian J Sci Res 2009; 2 : 167-79.  Back to cited text no. 4
Kikuchi T, Sakuta T, Yamaguchi T. Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthritis Cartilage 1998; 6 : 177-86.  Back to cited text no. 5
Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 2002; 10 : 226-33.  Back to cited text no. 6
Artuzi FE, Langie R, Abreu MC, Quevedo AS, Corsetti A, Ponzoni D, et al. Rabbit model for osteoarthrosis of the temporomandibular joint as a basis for assessment of outcomes after intervention. Br J Oral Maxillofac Surg 2016; 54 : e33-7.  Back to cited text no. 7
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11 : 19.  Back to cited text no. 8
Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL, et al. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther 2011; 13 : R210.  Back to cited text no. 9
Mohan G, Perilli E, Parkinson IH, Humphries JM, Fazzalari NL, Kuliwaba JS, et al. Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: Effect on subchondral trabecular bone microarchitecture and cartilage degradation of the tibia, bone/cartilage turnover, and joint discomfort. Osteoarthritis Cartilage 2013; 21 : 1595-604.  Back to cited text no. 10
Kosaki A, Hasegawa T, Kimura T, Iida K, Hitomi J, Matsubara H, et al. Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes. J Clin Endocrinol Metab 2004; 89 : 5423-8.  Back to cited text no. 11
Nakashima M, Sakai T, Hiraiwa H, Hamada T, Omachi T, Ono Y, et al. Role of S100A12 in the pathogenesis of osteoarthritis. Biochem Biophys Res Commun 2012; 422 : 508-14.  Back to cited text no. 12
Wang LC, Zhang HY, Shao L, Chen L, Liu ZH, He X, et al. S100A12 levels in synovial fluid may reflect clinical severity in patients with primary knee osteoarthritis. Biomarkers 2013; 18 : 216-20.  Back to cited text no. 13
Moskowitz RW. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis Cartilage 2006; 14 : 1-2.  Back to cited text no. 14
Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis Cartilage 2006; 14 : 13-29.  Back to cited text no. 15


  [Figure 1]

  [Table 1]

This article has been cited by
1 Animal models of osteoarthritis: characterization of a model induced by Mono-Iodo-Acetate injected in rabbits
Mohamed Ali Rebai,Nizar Sahnoun,Oussema Abdelhedi,Khaled Keskes,Slim Charfi,Fathia Slimi,Rim Frikha,Hassib Keskes
Libyan Journal of Medicine. 2020; 15(1): 1753943
[Pubmed] | [DOI]
2 Correlation between synovial fluid calcium containing crystal estimation and varying grades of osteoarthritis created using a rabbit model: Potential diagnostic tool
Elizabeth Vinod,Tephilla Epsibha Jsefferson,Soosai Manickam Amirtham,Neetu Prince,Tulasi Geevar,Grace Rebekah,Boopalan Ramasamy,Upasana Kachroo
Journal of Clinical Orthopaedics and Trauma. 2020;
[Pubmed] | [DOI]
3 Condylotomy To Reverse Temporomandibular Joint Osteoarthritis In Rabbits
Edela Puricelli,Felipe Ernesto Artuzi,Deise Ponzoni,Alexandre Silva Quevedo
Journal of Oral and Maxillofacial Surgery. 2019;
[Pubmed] | [DOI]
4 Comparison of monosodium iodoacetate model of osteoarthritis between in-vivo and ex-vivo osteochondral unit in rabbits
Elizabeth Vinod,Ozlem Ozbey,Arumugam Sabareeswaran,Upasana Kachroo,Solomon Sathishkumar,P.R.J.V.C. Boopalan
Journal of Clinical Orthopaedics and Trauma. 2018;
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded283    
    Comments [Add]    
    Cited by others 4    

Recommend this journal