Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 5601       
ORIGINAL ARTICLE
Year : 2017  |  Volume : 145  |  Issue : 6  |  Page : 833-839

Modelling of cerebral tuberculosis in BALB/c mice using clinical strain from patients with CNS tuberculosis infection


1 Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
2 ICMR- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
3 Department of Neurology, Central India Institute of Medical Sciences, Nagpur, India
4 Department of Neurosurgery, Central India Institute of Medical Sciences, Nagpur, India

Correspondence Address:
Umesh Datta Gupta
ICMR- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra 282 004, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_1930_15

Rights and Permissions

Background & objectives: Central nervous system (CNS) infection caused by Mycobacterium tuberculosis (MTB) is the most severe form of extrapulmonary tuberculosis (EPTB) due to a high level of mortality and morbidity. Limited studies are available on CNS-TB animal model development. The present study describes the development of a murine model of CNS-TB using a clinical strain (C3) isolated from the cerebrospinal fluid (CSF) of CNS-TB patients. Methods: Groups of mice were infected by the intravenous route with MTB C3 strain isolated from the CSF of CNS-TB patients. Brain and lung tissue were evaluated for bacterial burden, histopathology and surrogate markers of TB infection at 30 and 50 days post-infection. Results: Mice infected intravenously with MTB C3 strains showed progressive development of CNS disease with high bacillary burden in lungs at the initial stage (30 days), which eventually disseminated to the brain at a later stage (50 days). Similarly, high mortality (60%) was associated in mice infected with C3 strain compared to control. Interpretation & conclusions: The study showed development of a novel murine model of CNS-TB using the C3 strain of MTB that replicated events of extrapulmonary dissemination. The developed model would be helpful in understanding the pathogenesis of CNS-TB infection for the development of improved therapeutic interventions in future.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed981    
    Printed7    
    Emailed0    
    PDF Downloaded220    
    Comments [Add]    
    Cited by others 1    

Recommend this journal