Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 388       

   Table of Contents      
COMMENTARY
Year : 2016  |  Volume : 143  |  Issue : 3  |  Page : 264-266

Is fat mass & obesity-associated (FTO) gene master regulator of obesity ?


1 Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Uttar Pradesh, India
2 Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Uttar Pradesh; Department of Physiology, King George's Medical University, Lucknow 226 024, Uttar Pradesh, India
3 Department of Physiology, King George's Medical University, Lucknow 226 024, Uttar Pradesh, India

Date of Web Publication19-May-2016

Correspondence Address:
Balraj Mittal
Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-5916.182614

Rights and Permissions

How to cite this article:
Mittal B, Srivastava A, Srivastava N. Is fat mass & obesity-associated (FTO) gene master regulator of obesity ?. Indian J Med Res 2016;143:264-6

How to cite this URL:
Mittal B, Srivastava A, Srivastava N. Is fat mass & obesity-associated (FTO) gene master regulator of obesity ?. Indian J Med Res [serial online] 2016 [cited 2020 Oct 20];143:264-6. Available from: https://www.ijmr.org.in/text.asp?2016/143/3/264/182614

Obesity is a major health problem worldwide and is associated with a risk of many chronic diseases like type 2 diabetes, cardiovascular disease and cancer[1]. The aetiology of obesity is multi-factorial and any combination of environmental and lifestyle factors may possibly interact with multiple genetic variants to result in obesity[2]. In such multifactorial disorders, genome-wide association study (GWAS) is used to discover genetic variants associated with diseases. In 2007, using GWAS, a UK research team led by Dr Andrew Hattersley of Peninsula Medical School in Exeter discovered a gene variant that showed strong link with body mass index (BMI)[3]. The gene harbouring the variant was named as fat mass and obesity-associated (FTO). Further studies on 13 cohorts of 38,759 Britons, Finns and Italians also showed similar link between the FTO variant andbodyweight. Subsequently, several other genetic variants of FTO such as rs9939609[4], rs9930506[5], rs1421085, rs17817449, and rs1121980[6] have also been shown to confer very significant risk for obesity.

In subsequent years, studies in different cohorts such as control of blood pressure and risk attenuation (COBRA) study [0.52 kg/m2 (95% CI 0.15-0.89) P = 0.006] and the UK Asian Diabetes Study/Diabetes Genetics in Pakistan (UKADS/DGP) study[7] [0.42 kg/m2 (95% CI 0.16-0.68); P = 0.002], and combined meta-analysis of these two studies [0.45 kg/m2 (95% CI 0.24-0.67); P = 0.001] have shown increase in BMI with rising numbers of risk-alleles of FTO[7]. A replication study in Singaporean Chinese, Malay and Asian-Indian populations have also confirmed the effect of FTO genetic variants and obesity risk[8]. Replication studies of FTO rs9939609 carried out in Polish population showed that the AA genotype of rs9939609 was associated with higher BMI in children and adults[9],[10]. It has been shown that the risk alleles of several FTO genetic variants within 47 kb linkage disequilibrium (LD) block on sections of intron 1 and exon 2 of FTO gene are associated with obesity[4],[5],[6].

In the current issue, Wrzosek et al [11]investigated the association between FTO linked single nucleotide polymorphism (SNP, rs9930506) with obesity risk in Polish population. Their study group consisted of 442 adults, aged 33.9 ±12.7 yr with mean BMI 27.2 ± 5.4 kg/m2. They found that variant G-allele of rs9930506 was associated with higher BMI and a 1.5 kg/m2 increase in BMI per G-allele was also noticed. The results of this individual association study in context to obesity and FTO rs9930506 association indicated that parts of the Polish population are carriers of this genetic variant which may significantly increase the risk of developing obesity in their population. However, the study evaluated the association of single SNP with BMI but its association with other obesity-linked anthropometric and biochemical parameters could also have been evaluated.

In humans, FTO is expressed in the cell nucleus of every tissue[6]. The gene is highly expressed in hypothalamus and its arcuate, paraventricular, dorsomedial and ventromedial nuclei[12] controlling energy homeostasis and eating behaviour[3]. Studies in mouse models have shown that non-coding FTO regions act as long range enhancers contributing to obesity-linked phenotypes[13],[14],[15]. However, there is no evidence that such enhancers are connected with regulation of FTO expression[16],[17],[18].

Recently, it has been revealed that FTO and obesity association might be due to linkage disequilibrium between FTO intronic variations and other genes. Smemo and colleagues[19] have shown that variants within FTO act as long-range target on IRX3 gene located approximately 500kb downstream. Our unpublished results also support that genetic variants of FTO rs8050136, rs1421085, rs9939609, rs17817449 and IRX3 rs3751723 are in high linkage disequilibrium (LD) and their interactions significantly contribute towards obesity risk in north Indian population[20]. Thus, the association between FTO and obesity appears to be due to its influence on expression of IRX3 [Figure 1]. Genetic studies indicated FTO as an important gene for obesity risk in various populations but the recent developments suggest that obesity-associated FTO SNPs have long-range interactions with IRX3. Therefore, the exact contribution of FTO in obesity risk is still debatable. In addition, it would be of interest to identify various genes and molecules regulated by FTO-IRX3 for the development of novel therapies against obesity and diabetes.
Figure 1. Genomic organization of FTO region in high linkage disequilibrium (LD) to its neighbouring genes. The FTO variants rs1421085, rs9939609, rs8050136 and rs1781744 are reported to act as long range enhancers for IRX3 gene, believed to be master regulator of obesity. The enhancers located in FTO are also believed to influence the expression of other cis-located neighbouring genes such as IRX5, IRX6, RPGRIPL1 and FTS which may also contribute to obesity phenotype. SNP, single nucleotide polymorphism

Click here to view


 
   References Top

1.
Kopelman P. Health risks associated with overweight and obesity. Obes Rev 2007; 8 : 13-17.  Back to cited text no. 1
    
2.
Marti A, Martinez-Gonzalez MA, Martinez JA . Interaction between genes and lifestyle factors on obesity. Proc Nutr Soc 2008; 67 : 1-8.  Back to cited text no. 2
    
3.
Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447 : 661-78.   Back to cited text no. 3
[PUBMED]    
4.
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316 : 889-94.  Back to cited text no. 4
    
5.
Scuteri A, Sanna S, Chen WM, Uda M, Alba G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3 : e115.  Back to cited text no. 5
    
6.
Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39 : 724-6.  Back to cited text no. 6
    
7.
Rees SD, Islam M, Hydrie MZI, Chaudhary B, Bellary S, Hashmi S, et al. An FTO variant is associated with Type 2 diabetes in South Asian populations after accounting for body mass index and waist circumference. Diabet Med 2011; 28 : 673-80.  Back to cited text no. 7
    
8.
Dorajoo R, Blakemore A, Sim X, Ong RT. Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. Int J Obes (Lond) 2012; 36 : 159-63.  Back to cited text no. 8
    
9.
Luczynski W, Zalewski G, Bossowski A. The association of the FTO rs9939609 polymorphism with obesity and metabolic risk factors for cardiovascular diseases in Polish children. J Physiol Pharmacol 2012; 63 : 241-8.  Back to cited text no. 9
    
10.
Sobczyk-Kopciol A, Broda G, Wojnar M, Kurjata P, Jakubczyk A, Klimkiewicz A, et al. Inverse association of the obesity predisposing FTO rs9939609 genotype with alcohol consumption and risk for alcohol dependence. Addiction 2011; 106 : 739-48.  Back to cited text no. 10
    
11.
Wrzosek M, Zakrzewska A, Ruczko L, Jabłonowska-Lietz B, Nowicka G. Association between the rs9930506 polymorphism of the fat mass & obesity associated (FTO) gene & onset of obesity in Polish adults. Indian J Med Res 2016; 143 : 281-7.  Back to cited text no. 11
    
12.
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318 : 1469-72.  Back to cited text no. 12
    
13.
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nature Genet 2010; 42 : 1086-92.  Back to cited text no. 13
    
14.
Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, et al. Inactivation of the FTO gene protects from obesity. Nature 2009; 458 : 894-8.  Back to cited text no. 14
    
15.
Gao X1, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fatmass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 2010; 5 : e14005.  Back to cited text no. 15
[PUBMED]    
16.
Grunnet LG1, Nilsson E, Ling C, Hansen T, Pedersen O, Groop L, et al. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes 2009; 58 : 2402-8.  Back to cited text no. 16
[PUBMED]    
17.
Kloting N, Schleinitz D, Ruschke K, Berndt J, Fasshauer M, Tonjes A, et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia 2008; 51 : 641-7.  Back to cited text no. 17
    
18.
Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 2008; 49 : 607-11.  Back to cited text no. 18
    
19.
Smemo S, Tena JJ, Kim KH, Gamazon ER. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014; 507 : 371-5.  Back to cited text no. 19
    
20.
Srivastava A, Mittal B, Prakash J, Srivastava P, Srivastava N, Srivastava N. Association of FTO and IRX3 genetic variants to obesity risk in north India. Ann Hum Biol 2015; 3 : 1-6.  Back to cited text no. 20
    


    Figures

  [Figure 1]


This article has been cited by
1 The association of the common fat mass and obesity associated gene polymorphisms with type 2 diabetes in obese Iraqi population
Fadhil A. Nasser,Abdulhussein A. Algenabi,Najah R. Hadi,Majid K. Hussein,Ghizal Fatima,Hayder A. Al-Aubaidy
Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019; 13(4): 2451
[Pubmed] | [DOI]
2 Genome-wide association study of morbid obesity in Han Chinese
Kuang-Mao Chiang,Heng-Cheng Chang,Hsin-Chou Yang,Chien-Hsiun Chen,Hsin-Hung Chen,Wei-Jei Lee,Wen-Harn Pan
BMC Genetics. 2019; 20(1)
[Pubmed] | [DOI]
3 Determination of individual type 2 diabetes risk profile in the North East Indian population & its association with anthropometric parameters
Purabi Sarkar,Ananya Bhowmick,ManashP Baruah,Sahana Bhattacharjee,Poornima Subhadra,Sofia Banu
Indian Journal of Medical Research. 2019; 150(4): 390
[Pubmed] | [DOI]
4 Association of FTO rs9939609 with Obesity in the Kuwaiti Population: A Public Health Concern?
Ahmad Al-Serri,SuzanneA. Al-Bustan,Maisa Kamkar,Daisy Thomas,Osama Alsmadi,Rabeah Al-Temaimi,OlusegunA. Mojiminiyi,NabilaA. Abdella
Medical Principles and Practice. 2018; 27(2): 145
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References
    Article Figures

 Article Access Statistics
    Viewed1347    
    Printed6    
    Emailed0    
    PDF Downloaded429    
    Comments [Add]    
    Cited by others 4    

Recommend this journal