Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 345       
Year : 2015  |  Volume : 141  |  Issue : 6  |  Page : 807-815

Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

1 School of Medicine, Department of General Surgery, Kocaeli University, Kocaeli, Turkey
2 Faculty of Medicine, Pathophysiology, Ankara University, Ankara, Turkey
3 Department of Molecular Biology & Technology Research & Development Unite, Ankara University; School of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
4 Faculty of Medicine, Physiology Department, Yeditepe University, Istanbul, Turkey

Correspondence Address:
TonguÁ Utku Yilmaz
Kocaeli University, Faculty of Medicine, Department of General Surgery, 41380, Umuttepe, Kocaeli
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-5916.160713

Rights and Permissions

Background & objectives: Erythropoietin (EPO) has cytoprotective and anti-apoptotic effects in pathological conditions, including hypoxia and ischaemia-reperfusion injury. One of the targets to protect against injury is ATP-dependent potassium (KATP ) channels. These channels could be involved in EPO induced ischaemic preconditoning like a protective effect. We evaluated the cell cytoprotective effects of EPO in relation to KATP channel activation in the renal tubular cell culture model under hypoxic/normoxic conditions. Methods: Dose and time dependent effects of EPO, KATP channel blocker glibenclamide and KATP channel opener diazoxide on cellular proliferation were evaluated by colorimetric assay MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide] under normoxic and hypoxic conditions in human renal proximal tubular cell line (CRL-2830). Evaluation of the dose and time dependent effects of EPO, glibenclamide and diazoxide on apoptosis was done by caspase-3 activity levels. Hypoxia inducible factor-1 alpha (HIF-1 α) mRNA levels were measured by semi-quantative reverse transcription polymerase chain reaction (RT)-PCR. Kir 6.1 protein expresion was evalutaed by w0 estern blot. Results: Glibenclamide treatment decreased the number of living cells in a time and dose dependent manner, whereas EPO and diazoxide treatments increased. Glibenclamide (100 μM) treatment significantly blocked the anti-apoptotic effects of EPO (10 IU/ml) under both normoxic and hypoxic conditions. EPO (10 IU/ml) and diazoxide (100 μM) treatments significantly increased (p0 <0.01) whereas glibenclamide decreased ( p0<0.05) HIF-1 α mRNA expression. Glibenclamide significantly ( p0<0.01) decreased EPO induced HIF-1 α mRNA expression when compared with the EPO alone group. Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic/normal conditions.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded346    
    Comments [Add]    

Recommend this journal