Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 2607       

   Table of Contents      
Year : 2014  |  Volume : 139  |  Issue : 3  |  Page : 393-401

Adrenal insufficiency in patients with stable non-cystic fibrosis bronchiectasis

1 Department of Pulmonary & Critical Care Medicine, St John's Medical College Hospital, Bangalore; Department of Pulmonary & Solid organ transplant ICU, Global Hospitals & Health City, Chennai, India
2 Department of Endocrinology, St John's Medical College Hospital, Bangalore, India
3 Department of Respiratory Medicine, St John's Medical College Hospital, Bangalore, India
4 Department of Radiodiagnosis, St John's Medical College Hospital, Bangalore, India

Date of Submission19-Jul-2012
Date of Web Publication9-May-2014

Correspondence Address:
Srinivas Rajagopala
Consultant, Department of Pulmonary & Solid organ transplant ICU Global Hospitals & Health City, Perumbakkam, Chennai 600 100
Login to access the Email id

Source of Support: None, Conflict of Interest: None

PMID: 24820833

Rights and PermissionsRights and Permissions

Background & objectives: Suppressed adrenal responses associated with inhaled steroid use have been reported in patients with bronchiectasis and have been shown to be associated with poor quality of life. This study was undertaken to examine the prevalence of suppressed cortisol responses in stable bronchiectasis and determine their correlation with the use of inhaled corticosteroids, radiologic severity of bronchiectasis and quality of life (QOL) scores.
Methods: In this case-control study, cases were patients with bronchiectasis and suppressed cortisol responses and controls were healthy volunteers, and patients with bronchiectasis without suppressed cortisol responses. Symptoms, lung function test values, exercise capacity, HRCT severity scores for bronchiectasis, exacerbations, inhaled corticosteroid use and quality of life scores were compared between patients with and without suppressed cortisol values.
Results: Forty consecutive patients with bronchiectasis and 40 matched controls underwent 1-μg cosyntropin testing. Baseline cortisol (mean difference -2.0 μg/dl, P=0.04) and 30-minute stimulated cortisol (mean difference -3.73 μg/dl, P=0.001) were significantly lower in patients with bronchiectasis. One patient had absolute adrenal insufficiency and 39.5 per cent (15/38) patients with bronchiectasis had impaired stimulated responses. Baseline and stimulated cortisol responses were unaffected by inhaled steroids (O.R 1.03, P=0.96). SGRQ scores were negatively correlated with body mass (r= -0.51, P=0.001) and bronchiectasis severity (r=0.37, P=0.019), but not related to baseline or stimulated cortisol responses.
Interpretation & conclusions: Our results showed that the impaired adrenal responses to 1-μg cosyntropin were common in patients with bronchiectasis. This was not associated with the use of inhaled steroids or severity of bronchiectasis. Poor health status was associated with advanced disease and not with cortisol responses to the 1-μg cosyntropin test.

Keywords: Adrenal insufficiency - bronchiectasis - fatigue - St. George Respiratory Questionnaire - Synacten test

How to cite this article:
Rajagopala S, Ramakrishnan A, Bantwal G, Devaraj U, Swamy S, Ayyar S V, D'Souza G. Adrenal insufficiency in patients with stable non-cystic fibrosis bronchiectasis. Indian J Med Res 2014;139:393-401

How to cite this URL:
Rajagopala S, Ramakrishnan A, Bantwal G, Devaraj U, Swamy S, Ayyar S V, D'Souza G. Adrenal insufficiency in patients with stable non-cystic fibrosis bronchiectasis. Indian J Med Res [serial online] 2014 [cited 2021 May 8];139:393-401. Available from:

Bronchiectasis is characterized by non-reversible airway dilatation and a few evidence-based medical therapies exist for the treatment of non-cystic fibrosis (non-CF) bronchiectasis [1] . The use of inhaled corticosteroids (ICS) reduces sputum volume but does not reduce exacerbations or decline in lung function in bronchiectasis [2] . Fatigue, tiredness and weight loss are frequent in patients with bronchiectasis and these symptoms are often worsened during an exacerbation [3] . ICS treatment may cause a dose-dependent reduction in serum cortisol due to systemic absorption and this is associated with suppression of the hypothalamo-pituitary-adrenal (HPA) axis [4] . Patients with bronchiectasis have dilated and more permeable airways, with potential for greater systemic steroid absorption and also are affected with recurrent episodes of acute infection, both of which may blunt HPA responses. ICS use has been associated with impaired adrenal responses and poor health status in a series of patients with bronchiectasis using the 250 μg cosyntropin test in a previous study [5] . Compared to the western world, non-CF bronchiectasis is widely prevalent and more advanced at presentation [6] ; also, large dose inhaled or nebulized steroids are frequently used in South Asia (personal observation). We conducted a case-control study to compare adrenal responses in patients with bronchiectasis with healthy matched controls using the 1 μg cosyntropin test and to assess the association of suppressed responses with symptoms of adrenal suppression, ICS use, pulmonary function, exercise testing, computed tomography (CT) scores of severity of bronchiectasis and quality of life (QoL) assessment by the St. George Respiratory Questionnaire (SGRQ).

   Material & Methods Top

Patients: Consecutive patients evaluated in the outpatient clinic of the department of Chest Medicine, St. John's Medical College, Koramangala, Bangalore between March 2010 and February 2011 were eligible for enrollment. Inclusion criteria included the presence of bronchiectasis [7] and stable lung function as defined by less than 20 per cent variability in 24 h sputum volume, forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) with no deterioration in respiratory symptoms from the baseline visit. Patients who had received more than three courses of oral steroids over the previous year, received oral or parenteral steroid over the previous six weeks prior to study enrollment and those on long-term nebulized steroids, had unreliable clinic attendance or declining informed consent were excluded from the study. Controls were healthy volunteers working in our hospital who were matched by age (± 5 yr) and gender to the cases. The study protocol was approved by the institutional ethics board.

Methodology: Patients without exacerbation at presentation were interviewed in a separate room by a single interviewer without prompting from relatives to complete the interview. Spirometry, post-bronchodilator forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) 15 min after 400 μg inhaled salbutamol were performed as per American Thoracic Society (ATS)/European Respiratory Society (ERS) guidelines [8] using Powercube spirometer (Gangshorn Medizin electronics, Germany) and patients were evaluated for enrollment if no deterioration was noted as compared to a prior study. If no prior lung function data were available, another assessment was made at least one week after the first study. All patients also completed St. George Respiratory Questionnaire (SGRQ) in English or in previously validated local language (Kannada, Tamil and Hindi). The primary physician determined treatment for bronchiectasis, including the use of inhaled steroid. High-resolution computed tomography (HR) CT was performed using GE Bright Speed 16 slice (Fairfield, Connecticut, USA) by axial acquisition at 1 mm sections every 10 mm during a six-minute breath hold and the initial clinical assessment was performed within two weeks of the HRCT. The HRCT images were retrieved and severity scoring was performed according to a CT-measure of severity [9] by two independent observers; any discrepancies were resolved by consensus. The extent of bronchiectasis in each lobe (subdivided into proximal, middle and distal using defined criteria) was scored on a 5-point scale based on severity of bronchiectasis, bronchial wall thickening, atelectasis, air trapping and mucoid impaction. The maximum possible score for each lobe was 40, with a total theoretical maximum of 240 per patient. Further, the extent of bronchiectasis alone was also semi-quantitatively scored as mild (Grade 1 bronchiectasis), moderate (Grade 2 bronchiectasis) and severe (cystic or saccular bronchiectasis). All newly diagnosed patients with bronchiectasis also underwent transthoracic echocardiography to look for evidence and severity of pulmonary artery hypertension, where present. Sub-maximal functional assessment was also performed at baseline in all patients by six-minute walk testing as per ATS guidelines [10] ; patients who had a resting saturation of <92 per cent or exercise desaturation (>4% desaturation on testing) underwent arterial blood gas analysis to see if they fulfilled criteria for long-term oxygen therapy.

Controls were healthy hospital employees or students who were screened for absence of any medical complaints or medication intake and sequentially enrolled by matching for age (± 5 yr) and gender [Figure 1]. All enrolled subjects were evaluated following an overnight fast, having discontinued inhaled steroids for at least 24 h. Blood pressure was measured while supine, and at 1 and 3 min after standing. Postural hypotension was defined as a fall in systolic blood pressure of greater than 20 mmHg and a fall in diastolic blood pressure of greater than 10 mmHg upon standing. Intravenous access was established with a 20-guage cannula with a 10 centimeter extension and a 3-way stopcock. Blood was sampled at 0800 h for basal cortisol. Synthetic1-24 ACTH (adrenocorticotropin) cosyntropin 250 μg (1 milliliter, Synacthen®, Novartis, UK) was diluted in 499 ml of normal saline. Two milliliters of the reconstituted solution containing 1 μg cosyntropin was administered intravenously through the same cannula and flushed with ten milliliters of saline. Blood was drawn at exactly 30 min after administration of 1 μg cosyntropin for incremental cortisol response. Samples were processed using immunochemiluminometric assay (Beckmann-coulter AG).
Figure 1: Flowchart of the patients enrolled in a case-control study of adrenal insufficiency in non-CF bronchiectasis.

Click here to view

Statistical analysis:

Sample size calculation for the study was performed using the nMaster v1.0 program (CMC, Vellore, India). Using the published prevalence of suppressed responses in stable bronchiectasis and the prevalence with and without ICS use [5] , the estimated sample size was 38 patients to detect a 10 per cent difference with 80 per cent power and a type 1 error of 0.05.

The statistical package SPSS 16, USA (Statistical package for Social Sciences) was used to perform the statistical analysis. Epidemiological and outcome parameters of the patients are presented in a descriptive fashion (mean ± SD or median with IQR). Continuous variables were compared by the independent sample t test or Mann Whitney test and frequency proportions by the Chi-square test or Fisher's exact test. Odds ratio were calculated for the relationship between inhaled steroids and adrenal responses and cor-relation analyses were done for the presence of suppressed adrenal responses. All statistical tests were two-sided; P<0.05 was considered significant.

   Results Top

We enrolled 40 consecutive patients with bronchiectasis and 40 matched healthy controls. One patient with tuberculosis-related bronchiectasis had absolute adrenal insufficiency (symptoms and baseline cortisol of 1.6 μg/dl) and was started on replacement steroids. Of the remaining 39 patients, all underwent

1 μg Synacten testing and their baseline data are provided in [Table 1]. The study cohort had advanced bronchiectasis [70% grade 4 bronchiectasis, CT severity score 87.37 ± 34.46, (maximum possible score 240)] with frequent exacerbations [median 3; Interquartile range (IQR) 2-5.75 per year]. Desaturation on exercise (52.5%, 21/40) and pulmonary artery hypertension was common (27.5%, 11/40); no patient was on domiciliary oxygen therapy. 46.1 per cent (18/39) of the patients were on inhaled steroids and received inhaled budesonide (median dose 400 μg/day; range 200-800 μg/day) prior to enrollment (median 1.2 yr; IQR 8-24 months). The 30-minute cortisol value of one patient was unavailable and was excluded for analysis. Baseline cortisol was 10.45 and 12.46 μg/dl respectively for cases and controls (mean difference -2.01 μg/dl, P=0.04). The 30-minute stimulated cortisol response was 17.56 and 21.29 μg/dl respectively for cases and controls (mean difference -3.23 μg/dl, P<0.001). Using the lower 2.5 th percentile cortisol response to cosyntropin as the cut point defining impaired adrenal reserve, 39.5 per cent (15/38) patients with bronchiectasis had impaired stimulated responses to 1 μg cosyntropin. Patients on inhaled steroids had a longer duration of symptoms [15.89 ± 1.98 (S.E) versus 9.25 ± 1.78 years (S.E), P=0.012] but lung function, exercise capacity, SGRQ scores, baseline and stimulated cortisol scores were similar [Table 2]. When patients with normal and suppressed cortisol responses were examined [Table 3], there was no significant difference in lung function, CT severity scores, ICS use (OR 0.61, P=0.46), self-reported exacerbation rates and/or admissions in the last six months or SGRQ scores. The symptoms score of SGRQ was significantly correlated negatively with body mass index [(BMI), r= -0.51, P=0.001] and the impacts and total SGRQ scores were significantly correlated negatively with BMI (r= -0.46, P=0.03 and r =-0.48, P=0.02, respectively) and with severity of bronchiectasis as measured by HRCT score (r=0.37, P=0.019 and r=0.33, P=0.036, respectively) but not with baseline (r=0.12, P=0.45) or stimulated cortisol responses (r=0.15, P=0.38, [Figure 2].
Figure 2: Scatter-plot with regression showing the lack of correlation of basal (left) and 30-min post-1 μg cosyntropin stimulation with total St. George Respiratory Questionnaire (SGRQ) scores.

Click here to view
Table 1: Baseline characteristics of patients undergoing 1μg Synacten test (N=40)

Click here to view
Table 2: Differences in characteristics among patients who used inhaled corticosteroids (ICS) and those who did not

Click here to view
Table 3: Comparison of characteristics among patients with and without suppressed 30-minute cortisol responses by 1 μg cosyntropin test*

Click here to view

   Discussion Top

Inhaled corticosteroids are widely used to reduce sputum volume, purulence, exacerbations and quality of life in patients with non-CF bronchiectasis [11],[12],[13] ; however, evidence suggests that the use of ICS does not improve spirometry measures of lung function and exacerbations in non-CF bronchiectasis [2] . High doses (≥800 μg budesonide equivalent) are often used clinically and in clinical trials of non-CF bronchiectasis [11],[13] . This may be associated with significant long-term side effects that may be underestimated as most studies are either short-term (≤ 1 yr) in duration or used self-reported endpoints for measurement of side effects.

Concern about the use of ICS in non-CF bronchiectasis was also raised by finding suppressed cortisol responses using the 250 μg Synacten test [5] . An association with poor quality of life was also reported [5] . The greater systemic absorption through the dilated, permeable airways of patients with bronchiectasis [5] and chronic systemic inflammation [14] associated with repeated infections and exacerbations have been

found to be related with the more frequent suppressed responses in bronchiectasis. The association of suppressed cortisol responses [15] and size of adrenal glands [16] with mortality have been reported in patients with septic shock. The present study was designed to investigate and compare the cortisol responses of patients with non-CF bronchiectasis with healthy controls. The impairment of adrenal reserve in bronchiectasis is likely to be mild and further, in a given individual it is difficult to predict the site of the abnormality in the HPA axis or its time of onset. The 1 μg cosyntropin test was used because it is more sensitive test than the 250 μg test [17] , is appropriate for patients with recent onset and partial secondary adrenal insufficiency [18],[19] .

Our study showed that patients with non-CF bronchiectasis had unrecognized impaired adrenal response to cosyntropin when compared to matched controls. However, we could not demonstrate an association of the baseline, 30 min or incremental cortisol responses with the use of ICS, aetiology of bronchiectasis, defined radiologic measures of severity of bronchiectasis or quality of life. We also could not find an association with the number of self-reported exacerbations and hospitalizations over a 12-month period and cortisol responses. On exploratory analysis of the SGRQ scores in our study group, it was found that total SGRQ scores were closely linked to body weight, severity scores of bronchiectasis and quantity of sputum production.

We found a similar proportion of suppressed responses to those reported with high-dose cosyntropin testing, suggesting that suppressed responses are frequent in non-CF bronchiectasis [5] . A matched control group was used in the present study to account for the reported variability in responses to 1 μg cosyntropin testing and lower 2.5 th percentile responses were obtained [20],[21] . The strengths of the present study included the inclusion of consecutive patients from a prospective large well-defined cohort of non-CF bronchiectasis and matched controls to 1 μg cosyntropin testing. Also, the patients included had a long duration of symptoms, poor lung function and long duration of ICS use. The availability of data of additional functional testing and CT-scores of severity of bronchiectasis for cor-relation removed any confounding between ICS use, severity of bronchiectasis and SGRQ scores.

The limitations of the study included the small number of patients enrolled and the absence of information about the secular natural history of patients with suppressed responses to 1 μg cosyntropin and during exacerbations. Also, we measured total cortisol and not free cortisol and did not measure ACTH values; however, a previous study has suggested that abnormalities in cortisol-binding protein does not account for the suppressed responses [5] .

In conclusion, cortisol responses were frequently suppressed in patients with non-CF bronchiectasis by 1 μg-cosyntropin testing when compared to match controls. Suppressed cortisol responses were not associated with the use of ICS, aetiology of bronchiectasis, severity scores of bronchiectasis, number of self-reported exacerbations or SGRQ scores. Quality of life scores were negatively associated with body weight and CT-severity scores of bronchiectasis.

More data are needed about longitudinal cortisol responses and about the relation of these with prospectively collected data on exacerbations, decline in lung function and mortality.

   Acknowledgment Top

Authors acknowledge Dr P.J. Jones, for providing permission to use the St. George Respiratory Questionnaire in English and local languages.

   References Top

1.Pasteur MC, Bilton D, Hill AT; British Thoracic Society Non CF Bronchiectasis Guideline Group. British thoracic society guideline for non-CF bronchiectasis. Thorax 2010; 65 : 577.  Back to cited text no. 1
2.Kapur N, Bell S, Kolbe J, Chang AB. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev 2009; (1): CD000996.  Back to cited text no. 2
3.Hester KL, Macfarlane JG, Tedd H, Jary H, McAlinden P, Rostron L, et al. Fatigue in bronchiectasis. QJM 2012; 105 : 235-40.  Back to cited text no. 3
4.Donnelly R, Williams KM, Baker AB, Badcock CA, Day RO, Seale JP. Effects of budesonide and fluticasone on 24-hour plasma cortisol. A dose-response study. Am J Respir Crit Care Med 1997; 156 : 1746-51.  Back to cited text no. 4
5.Holme J, Tomlinson JW, Stockley RA, Stewart PM, Barlow N, Sullivan AL. Adrenal suppression in bronchiectasis and the impact of inhaled corticosteroids. Eur Respir J 2008; 32 : 1047-52.  Back to cited text no. 5
6.Agarwal R, Gupta D, Aggarwal AN, Behara D, Jindal SK. Allergic bronchopulmonary aspergillosis: lessons from 126 patients attending a chest clinic in north India. Chest 2006; 130 : 442-8.   Back to cited text no. 6
7.McGuinness G, Naidich DP, Leitman BS, McCauley DI. Bronchiectasis: CT evaluation. AJR Am J Roentgenol 1993; 160 : 253-9.  Back to cited text no. 7
8.Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005; 26 : 319-38.  Back to cited text no. 8
9.Lynch DA, Newell J, Hale V, Dyer D, Corkery K, Fox NL, et al. Correlation of CT findings with clinical evaluations in 261 patients with symptomatic bronchiectasis. AJR Am J Roentgenol 1999; 173 : 53-8.  Back to cited text no. 9
10.ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166 : 111-7.  Back to cited text no. 10
11.Tsang KW, Tan KC, Ho PL, Ooi GC, Ho JC, Mak J, et al. Inhaled fluticasone in bronchiectasis: a 12 month study. Thorax 2005; 60 : 239-43.  Back to cited text no. 11
12.Tsang KW. Inhaled corticosteroids in COPD. Thorax 1999; 54 : 186.  Back to cited text no. 12
13.Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, Soler-Cataluna JJ. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med 2006; 100 : 1623-32.  Back to cited text no. 13
14.Crofford LJ. The hypothalamic-pituitary-adrenal axis in the pathogenesis of rheumatic diseases. Endocrinol Metab Clin North Am 2002; 31 : 1-13.  Back to cited text no. 14
15.Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000; 283 : 1038-45.  Back to cited text no. 15
16.Jung B, Nougaret S, Chanques G, Mercier G, Cisse M, Aufort S, et al. The absence of adrenal gland enlargement during septic shock predicts mortality: a computed tomography study of 239 patients. Anesthesiology 2011; 115 : 334-43.  Back to cited text no. 16
17.Nye EJ, Grice JE, Hockings GI, Strakosch CR, Crosbie GV, Walters MM, et al. Comparison of adrenocorticotropin (ACTH) stimulation tests and insulin hypoglycemia in normal humans: low dose, standard high dose, and 8-hour ACTH-(1-24) infusion tests. J Clin Endocrinol Metab 1999; 84 : 3648-55.  Back to cited text no. 17
18.Streeten DH, Anderson GH Jr, Bonaventura MM. The potential for serious consequences from misinterpreting normal responses to the rapid adrenocorticotropin test. J Clin Endocrinol Metab 1996; 81 : 285-90.  Back to cited text no. 18
19.Gandhi PG, Shah NS, Khandelwal AG, Chauhan P, Menon PS. Evaluation of low dose ACTH stimulation test in suspected secondary adrenocortical insufficiency. J Postgrad Med 2002; 48 : 280-2.  Back to cited text no. 19
20.Fleseriu M, Gassner M, Yedinak C, Chicea L, Delashaw JB Jr, Loriaux DL. Normal hypothalamic-pituitary-adrenal axis by high-dose cosyntropin testing in patients with abnormal response to low-dose cosyntropin stimulation: a retrospective review. Endocr Pract 2010; 16 : 64-70.  Back to cited text no. 20
21.Dickstein G. High-dose and low-dose cosyntropin stimulation tests for diagnosis of adrenal insufficiency. Ann Intern Med 2004; 140 : 312-3.  Back to cited text no. 21


  [Figure 1], [Figure 2]

  [Table 1], [Table 2], [Table 3]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
   Material & Methods
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded321    
    Comments [Add]    

Recommend this journal