Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 2086       

   Table of Contents      
COMMENTARY
Year : 2013  |  Volume : 138  |  Issue : 4  |  Page : 443-445

Impaired function of upper limb muscles in patients with chronic obstructive pulmonary disease


Carl Ludwig Institute of Physiology, University of Leipzig, Liebigstr. 27 D-04103 Leipzig, Germany

Date of Web Publication19-Nov-2013

Correspondence Address:
Beate Rassler
Carl Ludwig Institute of Physiology, University of Leipzig, Liebigstr. 27 D-04103 Leipzig
Germany
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 24434251

Rights and PermissionsRights and Permissions

How to cite this article:
Rassler B. Impaired function of upper limb muscles in patients with chronic obstructive pulmonary disease. Indian J Med Res 2013;138:443-5

How to cite this URL:
Rassler B. Impaired function of upper limb muscles in patients with chronic obstructive pulmonary disease. Indian J Med Res [serial online] 2013 [cited 2020 Nov 24];138:443-5. Available from: https://www.ijmr.org.in/text.asp?2013/138/4/443/121444

Chronic obstructive pulmonary disease (COPD) is an incurable disease that is one of the most frequent causes of mortality in the world. In 1990, it has been the sixth leading cause of death worldwide but is projected to rank three by 2020. Data from prevalence surveys estimate that 15-25 per cent of adults at the age of 40 yr or above may have COPD according to their airflow limitation [1] .

COPD is usually associated with a number of secondary impairments such as cardiac, metabolic, peripheral muscle and psychosocial dysfunction. Hence, COPD patients often suffer from considerable co-morbidities which substantially accelerate deterioration of the patient's condition. A major problem among these secondary impairments is skeletal muscle dysfunction, which is typically characterized by reduced muscle strength and endurance. Several factors contribute to this condition:

Inactivity and deconditioning: Hypoventilation-induced hypoxia and hypercapnia cause dyspnoea and thereby reduce the patients' exercise tolerance. Exercise intolerance is the most frequent complaint of COPD patients [2] . Patients keep down their muscular activity in order to reduce dyspnoea. As a consequence, muscular deconditioning further decreases exercise capacity and may substantially compromise the patients' daily life.

Impaired metabolic situation: In chronic pulmonary disease, impaired pulmonary gas exchange causes hypoxaemia and hypercapnia. Consequently, the oxygen supply to the muscles is reduced. The metabolic situation may be further compromised by fatigue of the respiratory muscles due to the increased work load of respiratory muscles including auxiliary respiratory musculature. In addition, cardiovascular dysfunction such as right ventricular overload (cor pulmonale) and disturbances in microcirculation may aggravate tissue hypoxia and hypercapnia. As an adaptive response, muscle metabolism changes in favour to anaerobic metabolism and to increased lactic acid production. The altered muscle energy metabolism in COPD patients leads to premature muscle acidosis and consequently, to increased muscle fatigability and reduced exercise capacity [3] .

Structural alterations of skeletal muscle: Chronic ventilatory disease is often accompanied by weight loss and peripheral muscle atrophy. This occurs in about 40-50 per cent of COPD patients but probably, this percentage is even underestimated [4] . It is characterized by enhanced protein degradation and associated with a change in fiber type composition [2] . One of the most typical abnormalities in COPD patients is a shift from fiber type I into type II. A meta-analysis of muscle fiber data showed that the type II-to-type I proportion was positively associated with the reduction in forced expiratory volume in one second (FEV 1 ) and FEV 1 /forced vital capacity (FVC) [5] . Muscle wasting and a reduced proportion of slow fibers result in muscle weakness and premature muscle fatigue.

Inflammation and oxidative stress: Systemic inflammation may also impair muscle perfusion and metabolism. COPD patients present higher plasma levels of proinflammatory cytokines which are even more increased by exercise [6] . Moreover, inflammation has been shown to trigger oxidative stress, which was associated with reduced skeletal muscle endurance [7] .

It should be remarked that breathing can affect peripheral muscle function via neural interactions originating from afferent and central respiratory activity. These influences can be demonstrated also in healthy subjects under normal conditions, but these are enhanced in resistive loaded breathing or with increased respiratory drive - situations which are similar to that of COPD patients. Resistive loading of inspiration and expiration reduced voluntary submaximal contraction force of upper and lower limb muscles in a differential way [8] while maximal contraction force was only reduced in leg but not in arm muscles [9] .

However, muscle weakness and increased fatigability are not the only limitations of skeletal muscle function. Neural interactions between respiratory and non-respiratory motor processes modify the temporal course of motor actions. Precision movements are particularly sensitive to these influences. Accuracy of finger movements has been found to vary in a respiratory phase-dependent manner. In turn, the movements exerted a modulating effect on the respiratory rhythm [10] . These effects were greater under hypercapnic conditions [11] indicating that neural interactions between breathing and other motor activities may be more important when ventilation is compromised.

Muscle dysfunction mostly concerns lower limb muscles of COPD patients. It has been considered to be one of the most important exercise-limiting factors [3] . Reduced muscle strength and endurance due to inflammation, oxidative stress, decreased proportion of oxidative fibers and altered energy expenditure have predominantly been observed in leg muscles [3],[5],[7] . Several studies show that oxidative capacity and muscle performance are better preserved in the upper than in the lower limb [12],[13] . Only a few authors showed reduced strength and endurance of upper limb muscles in COPD patients [14],[15] .

In this issue, Shah and co-workers [16] clearly demonstrated that strength and endurance of upper limb muscles were significantly reduced in COPD patients compared with age- and gender-matched healthy subjects. The authors investigated maximum voluntary handgrip strength and handgrip endurance at 1/3 rd of individual maximum handgrip strength. Their results showed that endurance was more affected than strength both in male and female patients. In addition, they found a positive correlation between handgrip muscle strength and both FVC and FEV 1 . The authors rightly emphasize the significance of upper limb muscle strength for routine day-to-day activities. Moreover, upper limb muscles, especially muscles of hand and fingers, often have to perform precision movements with low demands on muscle strength and endurance, which play an essential role in daily life. Therefore, early detection and treatment of impaired function of upper limb muscles have particular importance with respect to the patients' health-related quality of life.

Skeletal muscle dysfunction can impair the situation of patients with chronic lung diseases in several ways. Firstly, increased energy expenditure, earlier onset of fatigue and increased lactic acid production worsen the metabolic situation of the tissues resulting in aggravated hypoxaemia and lactic acidosis. These additional respiratory drives further increase respiratory work load and promote respiratory muscle fatigue. Secondly, dysfunction of peripheral muscles considerably contributes to exercise intolerance, which amplifies the patients' inactivity and may result in isolation and depression. Moreover, it upholds a vicious cycle that more and more deteriorates the disease. Finally, reduced muscular performance is not only due to muscle weakness and increased fatigability but also to affection of fine motor skills by neural influences from central respiratory activity. This aspect has particular importance for many everyday activities and concerns muscle function of the upper limb much more than that of the lower limb. Impaired function of arm and hand muscles substantially contributes to a progressive inability of the patients to manage their daily life.

Even though COPD is still an incurable disease, there are many therapeutic ways to improve the patients' condition. Improving skeletal muscle function is an essential column in the treatment of COPD patients [2] . Pulmonary rehabilitation includes exercise training programmes aiming to increase exercise capacity. Exercise training counteracts muscle wasting, improves the patients' metabolic situation and reduces dyspnoea. Most exercise programmes have focused on training of leg muscles [17] . However, as muscular dysfunction also concerns upper limb muscles, these muscles should be included in training programmes. Besides strength and endurance, fine motor skills might also be considered in rehabilitation programmes in order not only to improve the patients' disease status but to bring benefit for their general situation of everyday life.

 
   References Top

1.Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al; Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease - GOLD Executive Summary. Am J Respir Crit Care Med 2007; 176 : 532-55.  Back to cited text no. 1
[PUBMED]    
2.American Thoracic Society/European Respiratory Society. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease - A Statement of the American Thoracic Society and European Respiratory Society. Am J Respir Crit Care Med 1999; 159 : S1-S40.  Back to cited text no. 2
    
3.Debigaré R, Maltais F. The major limitation to exercise performance in COPD is lower limb muscle dysfunction. J Appl Physiol 2008; 105 : 751-3.  Back to cited text no. 3
    
4.Debigaré R, Côté CH, Maltais F. Peripheral muscle wasting in chronic obstructive pulmonary disease - Clinical relevance and mechanisms. Am J Respir Crit Care Med 2001; 164 : 1712-7.  Back to cited text no. 4
    
5.Gosker HR, Zeegers MP, Wouters EFM, Schols AMWJ. Muscle fiber type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax 2007; 62 : 944-9.  Back to cited text no. 5
    
6.Rabinovich RA, Figueras M, Ardite E, Carbó N, Troosters T, Filellaz X, et al. Increased tumour necrosis factor-á plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J 2003; 21 : 789-94.  Back to cited text no. 6
    
7.Koechlin C, Couillard A, Cristol JP, Chanez P, Hayot M, Le Gallais D, et al. Does systemic inflammation trigger local exercise-induced oxidative stress in COPD? Eur Respir J 2004; 23 : 538-44.  Back to cited text no. 7
    
8.Fontanari P, Vuillon-Cacciuttolo G, Balzamo E, Zattara-Hartmann MC, Lagier-Tessonnier F, Jammes Y. Resistive loaded breathing changes the motor drive to arm and leg muscles in man. Neurosci Lett 1996; 210 : 130-4.  Back to cited text no. 8
    
9.Turner D, Jackson S. Resistive loaded breathing has a functional impact on maximal voluntary contractions in humans. Neurosci Lett 2002; 326 : 77-80.  Back to cited text no. 9
    
10.Rassler B, Ebert D, Waurick S, Junghans R. Coordination between breathing and finger tracking in man. J Motor Behavior 1996; 28 : 48-56.  Back to cited text no. 10
    
11.Rassler B, Nietzold I, Waurick S. Phase-dependence of breathing and finger tracking movements during normocapnia and hypercapnia. Eur J Appl Physiol 1999; 80 : 324-32.  Back to cited text no. 11
    
12.Gea JG, Pasto M, Carmona MA, Orozco-Levi M, Palomeque J, Broquetas J. Metabolic characteristics of the deltoid muscle in patients with chronic obstructive pulmonary disease. Eur Respir J 2001; 17 : 939-45.  Back to cited text no. 12
    
13.Franssen FME, Wouters EFM, Baarends EM, Akkermans MA, Schols AMWJ. Arm mechanical efficiency and arm exercise capacity are relatively preserved in chronic obstructive pulmonary disease. Med Sci Sports Exerc 2002; 34 : 1570-6.  Back to cited text no. 13
    
14.Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y. Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve 1995; 18 : 495-502.  Back to cited text no. 14
[PUBMED]    
15.Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 1996; 153 : 976-80.  Back to cited text no. 15
[PUBMED]    
16.Shah S, Nahar P, Vaidya S, Salvi S. Upper limb muscle strength & endurance in chronic obstructive pulmonary disease. Indian J Med Res 2013; 138 : 492-6.  Back to cited text no. 16
  Medknow Journal  
17.Nici L, Donner C, Wouters E, Zuwallack R, Ambrosino N, Bourbeau J, et al; ATS/ERS Pulmonary Rehabilitation Writing Committee. American Thoracic Society/European Respiratory Society Statement on Pulmonary Rehabilitation. Am J Respir Crit Care Med 2006; 173 : 1390-413.  Back to cited text no. 17
[PUBMED]    




 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References

 Article Access Statistics
    Viewed707    
    Printed10    
    Emailed0    
    PDF Downloaded270    
    Comments [Add]    

Recommend this journal