Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1440    

   Table of Contents      
ORIGINAL ARTICLE
Year : 2011  |  Volume : 133  |  Issue : 4  |  Page : 387-394

Hybrid & El Tor variant biotypes of Vibrio cholerae O1 in Thailand


1 Department of Microbiology & Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2 Graduate Studies, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
3 Office for Research & Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
4 Department of Veterinary Science, Graduate School of Life & Environmental Sciences, Osaka Prefecture University, Osaka, Japan
5 Department of Enteric Diseases, Armed Force Research Institute of Medical Science, US Army Component, Bangkok, Thailand
6 Bamrasnaradura Institute, Nonthaburi, Thailand
7 Obihiro University of Agriculture & Veterinary Medicine, Department of Animal & Food Hygiene, Hokkaido, Japan
8 Department of Microbiology & Nutrition, Chugoku-gakuen University, Okayama, Japan
9 National Institute of Cholera & Enteric Diseases, Kolkata, India
10 Department of Parasitology & Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Date of Submission12-Feb-2010
Date of Web Publication29-Apr-2011

Correspondence Address:
W Chaicumpa
Emeritus Professor, Department of Parasitology, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 21537091

Rights and PermissionsRights and Permissions
   Abstract 

Background & objectives : El Tor Vibrio cholerae O1 carrying ctxB C trait, so-called El Tor variant that causes more severe symptoms than the prototype El Tor strain, first detected in Bangladesh was later shown to have emerged in India in 1992. Subsequently, similar V. cholerae strains were isolated in other countries in Asia and Africa. Thus, it was of interest to investigate the characteristics of V. cholerae O1 strains isolated chronologically (from 1986 to 2009) in Thailand.
Methods
: A total of 330 V. cholerae O1 Thailand strains from hospitalized patients with cholera isolated during 1986 to 2009 were subjected to conventional biotyping i.e., susceptibility to polymyxin B, chicken erythrocyte agglutination (CCA) and Voges-Proskauer (VP) test. The presence of ctxA, ctxB, zot, ace, toxR, tcpA C , tcpA E, hlyA C and hlyA E were examined by PCR. Mismatch amplification mutation assay (MAMA) - and conventional- PCRs were used for differentiating ctxB and rstR alleles.
Results: All 330 strains carried the El Tor virulence gene signature. Among these, 266 strains were typical El Tor (resistant to 50 units of polymyxin B and positive for CCA and VP test) while 64 had mixed classical and El Tor phenotypes (hybrid biotype). Combined MAMA-PCR and the conventional biotyping methods revealed that 36 strains of 1986-1992 were either typical El Tor, hybrid, El Tor variant or unclassified biotype. The hybrid strains were present during 1986-2004. El Tor variant strains were found in 1992, the same year when the typical El Tor strains disappeared. All 294 strains of 1993-2009 carried ctxBC ; 237 were El Tor variant and 57 were hybrid.
Interpretation & conclusions : In Thailand, hybrid V. cholerae O1 (mixed biotypes), was found since 1986. Circulating strains, however, are predominantly El Tor variant (El Tor biotype with ctxB C).

Keywords: Biotypes - El Tor variant - Thailand - Vibrio cholerae


How to cite this article:
Na-Ubol M, Srimanote P, Chongsa-nguan M, Indrawattana N, Sookrung N, Tapchaisri P, Yamazaki S, Bodhidatta L, Eampokalap B, Kurazono H, Hayashi H, Nair G B, Takeda Y, Chaicumpa W. Hybrid & El Tor variant biotypes of Vibrio cholerae O1 in Thailand. Indian J Med Res 2011;133:387-94

How to cite this URL:
Na-Ubol M, Srimanote P, Chongsa-nguan M, Indrawattana N, Sookrung N, Tapchaisri P, Yamazaki S, Bodhidatta L, Eampokalap B, Kurazono H, Hayashi H, Nair G B, Takeda Y, Chaicumpa W. Hybrid & El Tor variant biotypes of Vibrio cholerae O1 in Thailand. Indian J Med Res [serial online] 2011 [cited 2021 Sep 25];133:387-94. Available from: https://www.ijmr.org.in/text.asp?2011/133/4/387/80129

Vibrio cholerae , the causative agent of severe watery diarrhoeal disease cholera, comprises 206 serogroups (O1-O206) based on antigenic diversity of their outer membrane lipopolysaccharides [1],[2] . Strains of the O1 serogroup are divided into two biotypes i.e., classical and El Tor, according to their phenotypic differences. The classical strains are sensitive to 50 units of polymyxin B and Mukerjee's type IV bacteriophage while the El Tor strains are generally dually resistant with the exception of some strains isolated in southern Bangladesh [3],[4] . The El Tor strains are more adapted and resilient in environment, and cause higher infection to case ratio and more asymptomatic carriers than the classical counterpart [5] . Clinical manifestations of cholera caused by classical V. cholerae are more severe and prolonged than those caused by the El Tor [6],[7] . This is attributable to the subtle difference of cholera toxin (CT) encoded by ctxAB genes of V. cholerae. Each of the V. cholerae O1 biotype can be divided into three serotypes i.e., Ogawa, Inaba, and Hikojima. Since 1817, the world has experienced seven cholera pandemics caused by V. cholerae O1. Strains of classical biotype were considered as the causative agents for the first six pandemics while the 7 th cholera pandemic which started in 1961 from Sulawesi Island, Indonesia, was caused by El Tor V. cholerae O1. Since then, the El Tor V. cholerae had replaced the classical biotype as the sole cause of cholera epidemics until 1982 when there was a re-emergence of the classical V. cholerae isolated from patients during an epidemic in Bangladesh [8],[9],[10] . Both biotypes co-existed in Bangladesh until the classical vibrios became extinct in 1993. Until 1991, only toxigenic V. cholerae O1 strains caused cholera epidemic and pandemics. In 1992, a large cholera outbreak was reported from southern India and subsequently spread rapidly to neighbouring countries in several countries in Asia but did not spread to any other continent. The epidemic organism was non-O1 V. cholerae which could not be allocated into any of the pre-existing non-O1 serogroups. Subsequently, the organism was designated as serogroup O139 synonym Bengal in recognition of the place of origin [11],[12],[13] .

New V. cholerae O1 variants carrying mixed classical and El Tor phenotypes were first isolated from hospitalized patients with severe watery diarrhoea in Matlab, Bangladesh, in 2002 [3] . These isolates could not be allocated into the classical or El Tor biotype using conventional biotyping tests. Genotypically, these were found to carry the El Tor genome backbone including El Tor specific gene clusters: VSP-I and -II and RTX, indicating that these belonged to El Tor lineage. These isolates carried different combinations of alleles of tcpA and CTX prophage repressor gene (rstR) [4] . Their classical biotype characteristic was due to the presence of the classical CTX prophage and the deduced amino acids of the nucleotide sequence coding for cholera toxin B subunit belonged to classical biotype. Similar strains were isolated in Mozambique in 2004 [14] . Subsequently, V. cholerae O1 El Tor variants have been reported from several Asian countries including China, Japan, Hong Kong, Sri Lanka, and Vietnam and Africa (Zambia) [15] . In a retrospective study of V. cholerae strains isolated in Kolkata, India, during a 17 year period (1989-2005), using mis-match amplification mutation assay (MAMA)-PCR for determining ctxB alleles, it was revealed that the El Tor strains carrying ctxB allele of the classical biotype (ctxB C) have emerged since 1991 and co-existed with the prototype El Tor strains until 1995 when these completely replaced the typical El Tor biotype. Arbitrarily, the V. cholerae O1 strains carrying mixed phenotypes of classical and El Tor biotypes [polymyxin B (50 units) susceptibility and positive for chicken erythrocyte agglutination (CCA) and Voges-Proskauer (VP) test] are designated hybrid biotype where as the V. cholerae O1 with typical El Tor phenotypes (resistant to 50 units of polymyxin B, and positive for CCA and VP test) but carrying ctxB C are designated El Tor variant [16] . This nomenclature has been followed in this study.

The 7 th pandemic cholera arrived in Thailand in 1963, when the El Tor strains completely replaced the classical vibrios and established endemicity [17] . The O139 Bengal was first isolated from hospitalized patient with severe watery diarrhoea in Thailand in 1993 [18] . The O139 serogroup completely disappeared from Thailand since 1996 [17] . Because it is known that classical V. cholerae strains with ctxB C inflicted more severe symptoms than the typical El Tor infection [6],[16] and because there had been a resurgence of cases of severe watery diarrhoea that required hospitalization during 1999-2002, it was of interest to make an insight into both phenotypic and genotypic characteristics of V. cholerae O1 isolated from cholera patients in different years in Thailand.


   Material and Methods Top


Bacterial strains: A total of 330 V. cholerae O1 strains (248 Ogawa, 82 Inaba) isolated from hospitalized patients with cholera in various regions of Thailand from 1986 to 2009 [Table 1] were investigated. Nineteen V. cholerae O1 strains collected from Australia, Bangladesh, India, Peru, Romania and Thailand in different years were used as reference strains [4],[19] [Table 2]. Among them, 16 strains were obtained from the collection of the Laboratory Science Division, the International Centre for Diarrhoeal Disease Research of Bangladesh, Dhaka, Bangladesh; two strains (G27875 and SC11) were provided by Dr T. Ramamurthy, the National Centre of Cholera and Enteric Diseases, Kolkata, India; and one strain (295/33) was from the Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. All strains were subjected to conventional biotyping methods (susceptibility to 50 units of polymyxin B, CCA and VP test) [20] using strains 569B and N16961 as the classical and El Tor reference strains, respectively.
Table 1: V. cholerae O1 strains isolated from Thailand during 1986-2009

Click here to view
Table 2: V. cholerae O1 reference strains isolated from various countries

Click here to view


Conventional- and MAMA-PCRs: All V. cholerae strains were examined for the presence of ctxA, ctxB, zot, ace, toxR, tcpA C , tcpA E, hlyA C and hlyA E by conventional PCR using strains AR15493 and AR15425 from Bangladesh as positive controls for zot, ace, toxR, and hlyA genes and strain C6706 as positive control for ctxAB and tcpA[19] . Conventional biotyping methods and a combination of MAMA- and conventional- PCRs were used for classifying the strains into prototype El Tor, hybrid, or El Tor variant biotypes, based on their ctxB and rstR genes [21],[22],[23] . Strains MJ1485 from Bangladesh and B33 from Mozambique served as hybrid biotype reference strains while G27875 and SC11 from NICED, India, were El Tor variant reference strains.

Primer sequences used in PCRs are shown in [Table 3] [19] . Amplification mixture (25 μl) for ctxB-MAMA-PCR and rstR-PCR composed of 1 μl bacterial genomic DNA template, 2.5 μl 10x PCR buffer, 2 μl each of 2.5 mM deoxynucleotide triphosphate (Fermentas, Vilnius, Lithuania), 2 μl of 25 mM MgCl 2 , 2 μl of 10 μM of individual forward and reverse primers (Bio Basic Inc., Toronto, Canada), 0.5 units Taq DNA polymerase (Fermentas) and sterile ultra pure distilled water. Amplification of other genes was essentially the same as described previously [19] . The PCR products were analyzed by using 1.5 per cent agarose (Seakem LE, BMA, Glendate, CA, USA) gel electrophoresis and ethidium bromide staining (Sigma Chemical Co., USA). A Gel Doc 2000 (Bio-Rad, CA, USA) was used for DNA band documentation.
Table 3: PCR primers for the study of V. cholerae O1 genes

Click here to view



   Results and Discussion Top


All of the 330 V. cholerae O1 Thai clinical strains collected over 24 years (1986-2009) were found to carry ctxA, ctxB, zot, ace, toxR, tcpA E and hlyA E which verified genetically their toxin producing capacity and epidemic potential. Two hundred and sixty six strains were prototype El Tor (resistant to the polymyxin B, and positive for CCA and VP test) and the remaining 64 strains were not biotypable [Table 1].

Identification of rstR by conventional PCR showed that the 36 strains of 1986-1992 carried either the El Tor rstR (rstR E) or combination of the El Tor and classical rstR (rstR E/C) [Table 1]. MAMA-PCR for ctxB of these isolates revealed that 18 (50%) carried ctxB E. Only 15 of these 18 strains had prototype El Tor phenotype (resistant to 50 units of polymyxin B, and positive for CCA and VP test) indicating that they were typical El Tor biotype. The other 3 strains, although carrying ctxB E, appeared to be hybrid biotype as they possessed mixed phenotypes [Table 1] and [Table 4]. There were 11 strains of 1986-1992 (31%) that carried ctxB E/C. Among these only one strain had mixed classical and El Tor phenotypes implying that this was hybrid biotype. The remaining 10 with ctxB E/C, however, could not be assigned into any of the redefined biotype scheme [16] although these showed conventional El Tor phenotype [Table 1] and [Table 4]. The remaining seven (19%) of the 1986-1992 (all were isolated in 1992) strains carried ctxB C; four of these had conventional El Tor phenotypes implying that these were El Tor variant while the other three had mixed phenotypes, and were hybrid [Table 1]. These data indicate the presence of hybrid biotype of V. cholerae O1 in Thailand since 1986 or even before and these co-existed with the typical El Tor strains. The V. cholerae O1 Thailand strains that carried ctxB E/rstR E i.e., typical El Tor strains, were found for the last time in 1992 in this V. cholerae O1 collection which was the same year when the strains of El Tor variant biotype (strains 30-33) carrying ctxB C/rstR E/C emerged in the country [Table 1]. It is noteworthy that in 1992 the epidemic V. cholerae O139 strains emerged in Southern India [11] . The [Figure 1] shows MAMA-PCR results of representative strains of V. cholerae chronologically isolated in Thailand i.e., ctxB C [Figure 1]A and ctxB E [Figure 1]B.
Table 4: Biotypes of the 330 V. cholerae Thailand clinical strains

Click here to view
Figure 1: Results of MAMA-PCR for amplification of ctxBC 0( A ) and ctxBE ( B ) from representative V. cholerae strains isolated in Thailand during 1986-2009. Lanes 2-6, 1986 strains; lane 7, 1987 strains; lanes 8-9, 1989 strains; lanes 10-22, 1990 strains; lanes 23-26, 1991 strains; lanes 27-36, 1992 strains and lanes 37-56, 1993-2009 strains. Lane M, 100 bp DNA marker. Lane 1 in ( A ), positive control of ctxBC (569B); lane 1 in ( B ), positive control of ctxBE (N16961).

Click here to view


The V. cholerae O1 Thailand strains of 1993-2009 (294) were all found to carry ctxBC and either rstR C or rstR E/C . Majority of these strains (237 strains), however, were El Tor variants as their phenotypes were typical El Tor. The minority (57 strains) belonged to hybrid biotype because these had mixed phenotypes of classical and El Tor [Table 1]. The 1986-2009 Thailand strains with hybrid biotype could be arbitrarily classified into 13 different hybrid groups, 1-13 [Table 4]. During 1986-1992, the biotypes of the 36 V. cholerae O1 Thailand strains were 15 prototype El Tor, 7 hybrid (groups 1-5), 4 El Tor variant, and 10 unclassified (unclassified groups 1 and 2) [Table 1] and [Table 4]. The 294 strains of 1993-2009 belonged to hybrid groups 6-13 (57 strains) and El Tor variants (237 strains) [Table 1] and [Table 4].

The V. cholerae O1 of hybrid biotype was isolated from patients in India in 1991 when typical V. cholerae classical and El Tor biotypes co-existed suggesting the horizontal CTX prophage exchange between strains of the two principal biotypes in order for the infecting strains to be more adapted to the host hostile intestinal environment [15] which conformed to the more severe cholera symptoms in the afflicted hosts in the recent years [3],[22],[24] . It is noteworthy, however, that the classical V. cholerae O1 disappeared from Thailand since 1963 [25] when the 7 th cholera pandemic caused by typical El Tor strains first hit the Kingdom's population. There has been no report on the period of co-existing classical and El Tor strains during 1986-2009 within Thailand. Our finding that the V. cholerae hybrid biotype could be detected among strains of 1986 suggested that there might be a re-emergence of the classical V. cholerae before or during 1986 or there might be other confounding molecular mechanism(s) in the shifting of the characteristics of V. cholerae bacteria in Thailand. The speculations warrant detail investigation. In 1992, the epidemic O139 strains emerged in India concurrent with the finding of El Tor variant in Thailand for the first time in this series of strain collection [Table 1]. Between 1992 and 1993, the V. cholerae O1 strains carrying ctxBC predominated in Kolkata, India [15] and Thailand (this study). Thus, there seemed to be incomprehensible event of genetic evolution of the V. cholerae yielding strains of mixed traits/phenotypes of the two authentic biotypes during this period. After 1994, isolates of V. cholerae O1 in Kolkata, India, seemed to carry only ctxB C; thus these were El Tor variants or hybrids (no phenotypes were given to define the biotype) [16] . Similarity was found among the Thailand strains of this study, however, two years earlier than the Kolkata's series. All of the Thai strains after 1992 carried ctxB C of which 57 (19%) were hybrid biotype and 237 strains (81%) were El Tor variants according to the conventional biotyping method and MAMA- and conventional- PCR determinations. In Punjab and Haryana, northern India, where a re-emergence of classical V. cholerae has not been reported, the V. cholerae hybrid biotype were also found in 2007 (80% of the isolates) [26] . As has been mentioned earlier, many V. cholerae isolates of several other countries in Asia and Africa were also found to be biotype hybrid/El Tor variant [15] indicating that the El Tor V. cholerae bacteria, regardless of the geographical areas, tend to evolve for acquisition of the classical CTX prophage. This phenomenon will have impact, more or less, on the treatment of cholera, public health measures, as well as vaccine development.


   Acknowledgment Top


The work was co-supported by the National Research University project of Thailand Office of Higher Education Commission (CHE) through Center for Biopharmaceutical Development and Innovative Therapy, Mahidol University and CHE RG 490329, the Thailand Research Fund (TRF; DPG5380001) and the Japan Health Science Foundation, Japan. P. Srimanote, N. Indrawattana, and N. Sookrung received research support from TRF.

 
   References Top

1.Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, Asai Y, et al. Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 1995; 28 : 175-8.  Back to cited text no. 1
    
2.Yamai S, Okitsu T, Shimada T, Katsube Y. Distribution of serogroups of Vibrio cholerae non-O1 non-O139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups. Kansenshogaku Zasshi 1997; 71 : 1037-45.  Back to cited text no. 2
[PUBMED]    
3.Nair GB, Faruque SM, Bhuiyan A, Kamruzzaman M, Siddique AK, Sack DA. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 2002; 40 : 3296-9.   Back to cited text no. 3
    
4.Safa A, Bhuyian NA, Nusrin S, Ansaruzzaman M, Alam M, Hamabata T, et al. Genetic characteristics of Matlab variants of Vibrio cholerae O1 that are hybrids between classical and El Tor biotypes. J Med Microbiol 2006; 55 : 1563-9.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet 2004; 363 : 223-33.   Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6.Kaper JB, Morris JG Jr, Levine MM. Cholera. Clin Microbiol Rev 1995; 8 : 48-86.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998; 62 : 1301-14.   Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8.Bart KJ, Huq Z, Khan M, Mosley WH. Seroepidemiologic studies during a simultaneous epidemic of infection with El Tor Ogawa and classical Inaba Vibrio cholerae. J Infect Dis 1970; 121 (Suppl 121) : S17-S24.   Back to cited text no. 8
    
9.Barua D. History of cholera. In: Barua D, Greenough WB, editors. Cholera, 3 rd ed. New York: Plenum Medical Book Co.; 1992. p. 1-36.  Back to cited text no. 9
    
10.Samadi AR, Huq MI, Shahid N, Khan MU, Eusof A, Rahman AS, et al. Classical Vibrio cholerae biotype displaces El Tor in Bangladesh. Lancet 1983; 1 : 805-7.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11.Albert MJ, Siddique AK, Islam MS, Faruque AS, Ansaruzzaman M, Faruque SM, et al. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 1993; 341 : 704.  Back to cited text no. 11
[PUBMED]    
12.Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal Cholera Working Group. International Centre for Diarrhoeal Diseases Research, Bangadesh. Lancet 1993; 342 : 387-90.  Back to cited text no. 12
    
13.Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T, et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 1993; 341 : 703-4.  Back to cited text no. 13
[PUBMED]    
14.Lee JH, Han KH, Choi SY, Lucas ME, Mondlane C, Ansaruzzaman M, et al; Mazambique Cholera Vaccine Demonstration Project Coordination Group. Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. J Med Microbiol 2006; 55 : 165-70.  Back to cited text no. 14
    
15.Safa A, Sultana J, Dac Cam P, Mwansa JC, Kong RY. Vibrio cholerae O1 hybrid El Tor strains, Asia and Africa. Emerg Infect Dis 2008; 14 : 987-8.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  
16.Raychoudhuri A, Mukhopadhyay AK, Ramamurthy T, Nandy RK, Takeda Y, Nair GB. Biotyping of Vibrio cholerae O1: time to redefine the scheme. Indian J Med Res 2008; 128 : 695-8.   Back to cited text no. 16
[PUBMED]  [FULLTEXT]  
17.Ministry of Public Health, Thailand. Bureau of Epidemiology and the Department of Disease Control. Disease Notification Report 2000.  Back to cited text no. 17
    
18.Chongsa-nguan M, Chaicumpa W, Moolasart P, Kandhasingha P, Shimada T, Kurazono H, et al. Vibrio cholerae O139 Bengal in Bangkok. Lancet 1993; 342 : 430-1.  Back to cited text no. 18
[PUBMED]    
19.Tapchaisri P, Na-Ubol M, Jaipaew J, Srimanote P, Chongsa-Nguan M, Yamasaki S, et al. Virulence genes of clinical Vibrio cholerae O1 isolates in Thailand and their ribotypes. J Infect 2007; 55 : 557-65.  Back to cited text no. 19
[PUBMED]  [FULLTEXT]  
20.World Health Organization, Geneva. Manual for laboratory investigations of acute enteric infections. WHO document CDD/83.3/Rev.1.113. Geneva: WHO; 1987.  Back to cited text no. 20
    
21.Morita M, Ohnishi M, Arakawa E, Bhuiyan NA, Nusrin S, Alam M, et al. Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of Vibrio cholerae O1 biotype ElTor. Microbiol Immunol 2008; 52 : 314-7.  Back to cited text no. 21
[PUBMED]    
22.Chatterjee S, Patra T, Ghosh K, Raychoudhuri A, Pazhani GP, Das M, et al. Vibrio cholerae O1 clinical strains isolated in 1992 in Kolkata with progenitor traits of the 2004 Mozambique variant. J Med Microbiol 2009; 58 : 239-47.  Back to cited text no. 22
[PUBMED]  [FULLTEXT]  
23.Nair GB, Mukhopadhyay AK, Safa A, Takeda Y. Emerging hybrid variants of Vibrio cholerae O1. In: Faruque SM, Nair GB, editors. Vibrio cholerae: Genomics and molecular biology. Norwich, UK: Horizon Scientific Press; 2008. p. 179-90.   Back to cited text no. 23
    
24.Tapchaisri P, Na-Ubol M, Tiyasuttipan W, Chaiyaroj SC, Yamasaki S, Wongsaroj T, et al. Molecular typing of Vibrio cholerae O1 isolates from Thailand by pulsed-field gel electrophoresis. J Health Popul Nutr 2008; 26 : 79-87.  Back to cited text no. 24
[PUBMED]  [FULLTEXT]  
25.Department of Disease Control, Ministry of Public Health, no. ICD-10: A00. Bureau of Epidemiology, The Ministry of Public Health, Thailand. Available from: http://epi.moph.go.th/fact/Cholera.htm , accessed on January 10, 2010.  Back to cited text no. 25
    
26.Taneja N, Mishra A, Sangar G, Singh G, Sharma M. Outbreaks caused by new variants of Vibrio cholerae O1 El Tor, India. Emerg Infect Dis 2009; 15 : 352-4.  Back to cited text no. 26
[PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Material and Methods
    Results and Disc...
    Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1992    
    Printed65    
    Emailed1    
    PDF Downloaded398    
    Comments [Add]    

Recommend this journal