Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1476       
ORIGINAL ARTICLE
Year : 2011  |  Volume : 133  |  Issue : 2  |  Page : 131-137

The role of C-terminus carbohydrate-binding domain of Vibrio cholerae haemolysin/cytolysin in the conversion of the pre-pore β-barrel oligomer to a functional diffusion channel


1 Division of Biochemistry, National Institute of Cholera & Enteric Diseases (ICMR), Kolkata, India
2 Division of Electron Microscopy, National Institute of Cholera & Enteric Diseases (ICMR), Kolkata, India

Correspondence Address:
Kalyan K Banerjee
Scientist 'F', Division of Biochemistry, National Institute of Cholera & Enteric Diseases, Kolkata 700 010
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 21415486

Rights and PermissionsRights and Permissions

Background & objectives : Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa pore-forming toxin (PFT) secreted by O1 El Tor and non-O1 strains. The purified toxin, which contains two C-terminus carbohydrate-binding domains in addition to the cytolytic domain at the core, causes lysis of a wide spectrum of eukaryotic cells at picomolar concentrations, apoptogenesis of intestinal and immune cells and accumulation of fluid in rabbit ligated ileal loop. Therefore, it may potentially complement the action of cholera toxin (CT) in diarrheagenic strains that do not produce CT. We showed earlier that β1-galactosyl-terminated glycoconjugates are strong inhibitors of its pore-forming activity, though carbohydrates are not functional receptors of VCC. Here, we investigate how the 15 kDa C-terminus β-prism lectin domain contributed to pore formation in erthrocytes. Methods : VCC was isolated from the culture supernatant of late log phase grown bacteria and purified to homogeneity by chromatography. The 50 kDa truncated variant was generated by restricted proteolysis. Liposome was prepared by sonication of a suspension of phospholipids and calceine release assay was done by spectrofluorometric monitoring of the released dye trapped in liposome. Formation of β-barrel oligomers in erythrocyte stroma was monitored by scanning electron microscopy. Results : Proteolytic truncation of the C-terminus β-prism lectin domain decreased hemolytic activity of the toxin by ~800-fold without causing a significant change in pore-forming activity toward synthetic lipid vesicles devoid of incorporated glycoproteins/glycolipids. Truncation at the C-terminus did not impair membrane-binding or assembly to the oligomeric pore. Interpretation & conclusions : Our data indicated that the C-terminus domain played a critical role in translocation of the pre-pore oligomeric assembly from the cell surface or lipid-water interface to the hydrocarbon core of the membrane bilayer, signaling the formation of functional diffusion channels.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1541    
    Printed61    
    Emailed0    
    PDF Downloaded263    
    Comments [Add]    

Recommend this journal