Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 3611       
ORIGINAL ARTICLE
Year : 2019  |  Volume : 150  |  Issue : 6  |  Page : 620-629

Vitamin A deficiency increases the oleic acid (C18:1) levels in the kidney of high fructose diet-fed rats


1 Divisions of Lipid Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
2 Divisions of Pathology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India

Correspondence Address:
Dr Shanmugam Murugaiha Jeyakumar
Lipid Biochemistry Division, ICMR-National Institute of Nutrition, Jamai Osmania, Hyderabad 500 007, Telangana
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_1574_17

Rights and Permissions

Background & objectives: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme responsible for endogenous synthesis of monounsaturated fatty acids (MUFA) and plays a key role in various pathophysiology, including fatty liver diseases. In this experimental study the impact of vitamin A deficiency was assessed on SCD1 regulation in relation to kidney biology, under high fructose (HFr) diet-fed condition in rats. Methods: Forty male weanling (21 day old) Wistar rats were divided into four groups control, vitamin A-deficient (VAD), HFr, VAD with HFr consisting of eight rats each, except 16 for the VAD group. The groups received one of the following diets: control, VAD, HFr and VAD with HFr for 16 wk, except half of the VAD diet-fed rats were shifted to HFr diet, after eight week period. Results: Feeding of VAD diet (alone or with HFr) significantly reduced the kidney retinol (0.51, 0.44 μg/g vs. 2.1 μg/g; P < 0.05), while increased oleic (C18:1) and total MUFA levels (23.3, 22.2% and 27.3, 25.4% respectively vs. 14.7 and 16.6%; P < 0.05) without affecting the SCD1, both at protein and mRNA levels, when compared with HFr. Comparable, immunohistological staining for SCD1 was observed in the distal convoluted tubules. Despite an increase in MUFA, morphology, triglyceride content and markers of kidney function were not affected by VAD diet feeding. Interpretation & conclusions: Feeding of VAD diet either alone or under HFr condition increased the kidney oleic acid (C18:1) levels and thus total MUFA, which corroborated with elevated SCD1 activity index, without affecting its expression status. However, these changes did not alter the kidney morphology and function. Thus, nutrient-gene regulation in kidney biology seems to be divergent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed191    
    Printed1    
    Emailed0    
    PDF Downloaded49    
    Comments [Add]    

Recommend this journal