Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1928       
ORIGINAL ARTICLE
Year : 2019  |  Volume : 149  |  Issue : 2  |  Page : 192-198

Plasmid-mediated fluoroquinolone resistance associated with extra-intestinal Escherichia coli isolates from hospital samples


1 Division of Infectious Diseases, Nitte University Centre for Science Education & Research, Mangaluru, India
2 Department of Microbiology, Madras Medical Mission, Chennai, India
3 Nitte University Centre for Science Education & Research, Mangaluru, India

Correspondence Address:
Dr Indrani Karunasagar
Nitte Centre for Science Education and Research, Kotekar-Beeri Road, Paneer Campus, Derelakatte, Mangalore 575 018, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_2092_17

Rights and Permissions

Background & objectives: Infection from fluoroquinolone-resistant extra-intestinal Escherichia coli is a global concern. In this study, isolation and characterization of fluoroquinolone-resistant extra-intestinal E. coli isolates obtained from hospital samples were undertaken to detect plasmid-mediated quinolone resistance (PMQR) genes. Methods: Forty three isolates of E. coli obtained from patients with extra-intestinal infections were subjected to antibiogram to detect fluoroquinolone resistance. The mechanism of fluoroquinolone resistance was determined by the detection of PMQR genes and mutations in quinolone resistance determining region (QRDR). Results: Of the 43 isolates, 36 were resistant to nalidixic acid (83.72%) and 28 to ciprofloxacin (65.11%). Eight E. coli isolates showed total resistance to both the antimicrobials without any minimum inhibitory concentration. The detection of PMQR genes with qnr primers showed the presence of qnrA in two, qnrB in six and qnrS in 21 isolates. The gene coding for quinolone efflux pump (qepA) was not detected in any of the isolates tested. The presence of some unexpressed PMQR genes in fluoroquinolone sensitive isolates was also observed. Interpretation & conclusions: The detection of silent PMQR genes as observed in the present study presents a risk of the transfer of the silent resistance genes to other microorganisms if present in conjugative plasmids, thus posing a therapeutic challenge to the physicians. Hence, frequent monitoring is to be done for all resistance determinants.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed207    
    Printed1    
    Emailed0    
    PDF Downloaded98    
    Comments [Add]    

Recommend this journal