Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1328       
ORIGINAL ARTICLE
Year : 2019  |  Volume : 149  |  Issue : 2  |  Page : 185-191

Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections


1 Department of Clinical Microbiology, Christian Medical College, Vellore, India
2 Department of Internal Medicine, Christian Medical College, Vellore, India
3 Department of Intensive Care, Christian Medical College, Vellore, India
4 Department of Urology, Christian Medical College, Vellore, India

Correspondence Address:
Dr Rani Diana Sahni
Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_2086_17

Rights and Permissions

Background & objectives: The escalation in carbapenem resistance among Enterobacteriaceae has resulted in a lack of effective therapeutic alternatives. Older antimicrobials, fosfomycin, nitrofurantoin and colistin for urinary tract infections (UTIs) caused by carbapenem-resistant Enterobacteriaceae (CRE) may be effective treatment options. The objectives of this study were to evaluate the utility of fosfomycin, nitrofurantoin and colistin in treating UTI caused by CRE and molecular characterization of the plasmid-mediated carbapenem resistance mechanisms. Methods: Consecutive, non-duplicate isolates of CR Escherichia coli and Klebsiella spp. from urine cultures were included (n=150). Minimum inhibitory concentrations (MIC) were determined by E-test (fosfomycin and nitrofurantoin) and broth microdilution (colistin). Efficacy ratios were derived by dividing susceptibility breakpoints by observed MIC values of the drugs for the isolates. Isolates were screened for genes coding for carbapenemases using multiplex PCR. Fosfomycin, nitrofurantoin and colistin-resistant isolates were screened for plasmid-borne resistance genes fos A3, oqx AB and mcr-1, respectively using PCR. Results: Among E. coli, 98.9, 56 and 95 per cent isolates were susceptible to fosfomycin, nitrofurantoin and colistin, respectively, while 94 and 85 per cent of Klebsiella spp. were susceptible to fosfomycin and colistin, respectively. The efficacy ratios indicated fosfomycin as the drug of choice for UTI caused by CR E. coli and Klebsiella spp., followed by colistin. The blaNDM gene was most common, followed by blaOXA48-like. Plasmid-borne genes encoding resistance to fosfomycin, nitrofurantoin and colistin were absent. Interpretation & conclusions: With increasing resistance against the current treatment options, older drugs may emerge as effective options. Molecular screening of resistant isolates is essential to prevent the spread of plasmid-borne resistance against these drugs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed162    
    Printed0    
    Emailed0    
    PDF Downloaded95    
    Comments [Add]    

Recommend this journal