Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 720       

   Table of Contents      
ORIGINAL ARTICLE
Year : 2018  |  Volume : 147  |  Issue : 5  |  Page : 477-483

A randomized controlled study of bedside electrocardiograph-guided tip location technique & the traditional chest radiography tip location technique for peripherally inserted central venous catheter in cancer patients


1 Department of Oncology, Lymphoma Diagnosis & Treatment Center of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
2 Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
3 Comprehensive Medical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China

Date of Submission11-Jul-2016
Date of Web Publication1-Aug-2018

Correspondence Address:
Dr AiMin Li
Department of Oncology, Lymphoma Diagnosis & Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
PR China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_1120_16

Rights and Permissions
   Abstract 

Background & objectives: The peripherally inserted central catheter (PICC) has the advantages of higher safety, lower infection rate and longer retention time than peripherally inserted catheter. This study was aimed to evaluate the accuracy and safety of bedside electrocardiograph (ECG)-guided tip location technique in PICC in cancer patients, and compared with traditional chest radiography tip location technique.
Methods: Patients were randomly assigned into two groups: The ECG test group patients underwent PICC insertion with ECG-guided tip location, while the control group patients had PICC insertion by the conventional method. The precision of tip location was verified by chest radiography in both groups. The groups were compared with regard to the accuracy of tip placement, anxiety levels before and after the procedure; medical cost and incidence of complications at one week, three months and six months after PICC insertion.
Results: Accurate tip location was achieved in 99.30 per cent in the ECG test group vs 92.30 per cent in the control group (P<0.001). At 24 h after the procedure, the anxiety level was significantly lower in the ECG test group. The presence of thrombogenesis was significantly lower in the ECG test group at both three months and six months after the procedure (P=0.04 and P=0.03, respectively).
Interpretation & conclusions: The ECG-guided PICC tip location technique was accurate and caused fewer procedure-related complications and less anxiety in patients compared to chest radiography tip location technique. Radiographic confirmation of PICC tip position may not be needed when ECG guidance is used and thus it can help avoid radiation exposure.

Keywords: Anxiety - chest radiograph - complications - electrocardiograph-guided - tip location


How to cite this article:
Li A, Jiao J, Zhang Y, Tian L, Miao J, Hao X, Sun Z, Sun Q. A randomized controlled study of bedside electrocardiograph-guided tip location technique & the traditional chest radiography tip location technique for peripherally inserted central venous catheter in cancer patients. Indian J Med Res 2018;147:477-83

How to cite this URL:
Li A, Jiao J, Zhang Y, Tian L, Miao J, Hao X, Sun Z, Sun Q. A randomized controlled study of bedside electrocardiograph-guided tip location technique & the traditional chest radiography tip location technique for peripherally inserted central venous catheter in cancer patients. Indian J Med Res [serial online] 2018 [cited 2019 Oct 23];147:477-83. Available from: http://www.ijmr.org.in/text.asp?2018/147/5/477/238229

IJMR_1120_16R10Compared to the traditional central venous catheter, the peripherally inserted central venous catheter (PICC), inserted through an upper extremity peripheral vein, has the advantages of higher safety, lower infection rate and longer retention time[1],[2]. It is useful for providing long-term parenteral nutrition and intravenous chemotherapeutic drugs and antibiotics[3],[4]. Appropriate tip placement of the PICC is important. Racadio et al[5] found complication rate was 3.8 per cent if tip location resided in the superior vena cava; however, complication rate rose to 28.8 per cent if tip location resided in other places, which increased the risk of complications. Serious complications with PICC include tip migration, infection, thrombosis and phlebitis[6],[7].

At present, the main techniques of PICC insertion include blind puncture, Seldinger technique and ultrasound-guided modified Seldinger technique[8]. The electrocardiograph (ECG)-guided PICC tip location technique is easy to perform, allows real-time adjustment of tip position and does not involve radiation exposure[9], which makes it the ideal technique. However, there have been a few studies on the safety and efficacy of bedside ECG-guided PICC tip location in cancer patients. Liu et al[10] and Zhao et al[11] studied 85 and 116 Chinese patients with ECG-guided PICC, respectively, and reported high accuracy of tip localization, but they did not examine the precision of tip location, procedure related anxiety and PICC-associated complications. This study was aimed to explore the accuracy, precision, safety, procedure-related anxiety and complications associated with bedside ECG-guided PICC tip location compared to traditional chest radiography tip location technique.


   Material & Methods Top


From June 1, 2014 to April 30, 2016, 294 patients in the Oncology department of the First Affiliated Hospital of Zhengzhou University, Henan, PR China, were approached to participate voluntarily in this randomized controlled clinical trial [Figure 1]. The study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University (Scientific Research No. 33, 2014). All participants gave written informed consent.
Figure 1: Flowchart showing the study design. PICC, peripherally inserted central venous catheter; ECG, electrocardiograph.

Click here to view


Patients were eligible for inclusion if they were inpatients and cancer patients. Patients were excluded if they had (i) serious bloodstream infection or systemic infection before catheterization; (ii) superior vena cava compression syndrome; (iii) serious cardiovascular disease (e.g., atrial fibrillation, pulmonary heart disease with abnormal P waves, or severe heart block); (iv) they were ≥18 yr old, and (v) they were on pacemakers and using implantable defibrillators. Four patients did not meet inclusion criteria, two patients declined to participate and two patients excluded because of other reasons, so 286 participants were found to be eligible for inclusion in the study.

Using a random number table, participants were separated into two groups: (i) the ECG test group (n=143), who underwent PICC insertion with bedside ECG-guided tip positioning, and (ii) the control group (n=143), who underwent PICC insertion by the traditional technique. There were no significant differences between the groups in age, gender, height, weight, upper arm circumference, educational level, diagnosis, co-morbidities, history of prior central venous catheter, history of PICC insertion, platelet count and the prothrombin time [Table 1].
Table 1: Characteristics of patients in the two groups

Click here to view


According to the pilot study result, the appropriate tip location rate of the control group was 89.0 per cent; the ECG test group was 98.4 per cent. PASS software (NCSS, LLC, USA) was used to calculate the sample size, and a sample size of 143 participants of each group was calculated with the statistical performance of 0.9093.

Methods

Catheterization technique: In all patients, the 18G (4Fr) × 65 cm, BDFirst PICC™ Kits (Becton Dickinson Infusion Therapy Systems Inc., USA) were used. The catheters were inserted by the same specialist nurses with the PICC qualification in a specially confined PICC puncture chamber and maintained in hospital by nurse PICC teams. The distance from the venepucture point to the right sternoclavicular joint, plus 5-7 cm, was the estimated catheter insertion length. The upper arm circumference was measured 10 cm above the elbow crease. Before ultrasound-guided venepuncture, the arm was cleaned and sterilized three times using 75 per cent alcohol and chlorhexidine.

The basilic vein was the first choice for venepunture. During the procedure, the length of the catheter in the body, the presence of resistance to removal of the guidewire within the catheter and the time taken for the procedure (from skin disinfection to application of the sticking plaster) were recorded.

In the ECG group patients, the four limb leads of the ECG machine were attached and normal P waves and sinus rhythm were confirmed on the lead II tracing. When the catheter was inserted almost up to the estimated length, the right arm lead was removed, the clamps sterilized and then attached to the guide wire. The guide wire was now advanced slowly, 0.5-1 cm at a time, while observing the P wave changes on the monitor. Three ECG P waveforms were obtained during the course of the catheterization: (i) the blunt short P wave of normal sinus rhythm; (ii) the biphasic P waves indicating tip location in the right atrium and (iii) high-amplitude P waves indicating tip location at the junction of the superior vena cava and the right atrium (P-wave amplitude 80% of QRS) or tip location in the lower one-third of the superior vena cava (P-wave amplitude 50% of QRS).

Chest radiography verification: For verification of tip position, chest radiography is generally accepted to be the gold standard[12], and accordingly, chest radiographs were taken in all patients to confirm correct tip position. The ideal position was defined as the middle and lower one-third of the superior vena cava or the junction of the superior vena cava and the right atrium.

Anxiety levels before and after PICC: The State-Trait Anxiety Inventory (STAI) prepared by the Gaudry et al[13] is a commonly used measure of trait and state anxiety and translated into Chinese in 1988[14]. Each item is graded on a scale of 1 to 4 (1: no, 2: some, 3: moderate and 4: obvious), and the total score ranging from 20 to 80 can be used to quantify an unpleasant short-term emotional experience[15],[16]. The Chinese version of the STAI had a Cronbach's alpha of 0.88[17]; in our study, Cronbach's alpha of the STAI was 0.89. The Chinese version of the inventory was used to assess anxiety levels in patients 24 h before and 24 h after catheterization.

PICC-related complications: PICC-related complications after one week, three months and six months were recorded in all patients who had been on regular catheter infusion therapy, with regular maintenance of the catheter. The patients were followed up every two weeks for their health status and the condition of the catheter.

Statistical analysis: SPSS 17.0 software (SPSS Inc., Chicago, IL, USA) was used for data analysis. Quantitative data (age, height, weight, upper arm circumference, platelet count, prothrombin time, activated partial thromboplastin time, cost and anxiety level) were expressed as the means±standard deviation. Qualitative data (gender, educational level, diagnosis, co-morbidities, history of prior central venous catheter, history of PICC insertion and complications) were compared using the chi-square test.


   Results Top


Accuracy and precision of tip positioning: Accurate catheter tip positioning was achieved in 99.3 per cent in the ECG test group versus 92.3 per cent in the control group (P=0.003; [Figure 2]). The catheter tips flush with the 6th, 7th and 8th intercostal were 20.30, 64.30 and 14.70 per cent, respectively, in the ECG test group versus 32.20, 40.60 and 19.60 per cent, respectively, in the control group and the difference was significant [Figure 3] and [Table 2].
Figure 2: Three electrocardiograph P wave forms seen during catheterization in the electrocardiograph test group. (A) Blunt, low-amplitude, P waves. (B) Biphasic P waves. (C) High-amplitude P waves (50 or 90% of QRS amplitude).

Click here to view
Figure 3: Chest radiographs of patients from the two groups. Arrow indicates the position of the catheter tip. Tip location flush with the 7th intercostal in a patient from the electrocardiograph test group. A-1 (chest radiograph); A-2 (magnified image). Tip location flush with the 5th intercostal in a patient from the control group. B-1 (chest radiograph); B-2 (magnified image).

Click here to view
Table 2: Precision of catheter tip positioning in the two groups

Click here to view


PICC-associated anxiety: The anxiety scores 24 h before catheterization in the two groups were not significantly different. However, 24 h after catheterization, the anxiety score in the ECG test group was significantly (P<0.001) lower than that in the control group [Table 3].
Table 3: Mean anxiety scores before and after catheterization in the two groups

Click here to view


Procedure-related complications: In the first week, two patients had thrombogenesis in the ECG test group versus four patients in the control group. No patient in either group had chest discomfort, arrhythmia, or infection. At the end of three months and six months, the incidence of thrombogenesis in the ECG test group was significantly lower than that in the control group. (P=0.04 and P=0.03, respectively) [Table 4].
Table 4: Procedure related complications in the two study groups after PICC insertion

Click here to view



   Discussion Top


There have been only a few studies to date on the precision of different techniques for PICC tip location. Consistent with other studies[18],[19], our study showed that the accuracy of the ECG-guided method was better than that of the traditional method. In the ECG test group patients, real-time adjustment of PICC tip position was possible by observing the lead II P wave morphology on the monitor. In the traditional method, a chest radiograph is necessary to confirm correct tip position whenever the PICC tip is readjusted. In this study, 11 patients in the control group needed adjustment of PICC tip position followed by repeat chest radiography to confirm correct positioning. This increased the radiation exposure to the patient.

Patients experience anxiety during PICC insertion procedure[20], so anxiety levels were assessed 24 h after PICC insertion; anxiety levels were 40.96±1.97 and 42.06±1.90, respectively. It could be possible that the patients in the ECG test group were reassured by the information provided to them at enrolment that they would be receiving a technologically advanced treatment with high success rates. Moreover, radiological confirmation of success at the end of the procedure would have allayed anxiety further. Once the precision of the ECG-guided technique is established, confirmation with chest radiography will not be necessary, and the cost of the procedure will be correspondingly less; Bream and Gu[21] and Walker et al[22] have also suggested the same.

PICC-related complications need to be minimized as they may affect, or even interrupt, the treatment of the patient's underlying condition[23]. In our study, the incidence of procedure-related complications was low and not significantly different between the two groups in the first week after PICC insertion. No patient had chest discomfort, arrhythmia or infection. To secure the safety usage of PICC and reduce the PICC-related complications, the strict rules of handling, the skill and experience of operator and cooperation of patients are necessary[24]. However, at the end of three and six months, the cases with thrombogenesis were found to be significantly lower in the ECG test group. In the control group, some patients needed repeated adjustment of PICC tip location; this may have caused damage to the vein wall and led to the higher incidence of thrombogenesis.

Our study had some limitations. First, only adult cancer inpatients were included in the study, and thus our findings might not apply to other types of patients (e.g., children, outpatients, or peripheral blood stem cell transplantation patients). Second, most of our study participants were lymphoma patients (because this study was conducted in the lymphoma diagnosis and treatment centre of the hospital).

In conclusion, the bedside ECG-guided PICC insertion method was found to be accurate, it allowed real-time adjustment of the PICC tip, and avoided radiation exposure. Significantly lower post-procedure anxiety levels and fewer postoperative complications are other advantages. With nurses trained in ECG-guided PICC tip location, it can be expected to become the preferred technique for patients without serious cardiovascular disease.


   Acknowledgment Top


Authors thank Prof. Chen Wei in the Nutrition department of Peking Union Medical College Hospital for guidance on PICC operation techniques in this study.

Financial support & sponsorship: None.

Conflicts of Interest: None.



 
   References Top

1.
Morano SG, Latagliata R, Girmenia C, Massaro F, Berneschi P, Guerriero A, et al. Catheter-associated bloodstream infections and thrombotic risk in hematologic patients with peripherally inserted central catheters (PICC). Support Care Cancer 2015; 23 : 3289-95.  Back to cited text no. 1
    
2.
Sakai T, Kohda K, Konuma Y, Hiraoka Y, Ichikawa Y, Ono K, et al. A role for peripherally inserted central venous catheters in the prevention of catheter-related blood stream infections in patients with hematological malignancies. Int J Hematol 2014; 100 : 592-8.  Back to cited text no. 2
    
3.
Rosenberg K, Zolot J. Criteria for appropriate PICC use in hospital patients. Am J Nurs 2016; 116 : 64.  Back to cited text no. 3
    
4.
Cotogni P, Barbero C, Garrino C, Degiorgis C, Mussa B, De Francesco A, et al. Peripherally inserted central catheters in non-hospitalized cancer patients: 5-year results of a prospective study. Support Care Cancer 2015; 23 : 403-9.  Back to cited text no. 4
    
5.
Racadio JM, Doellman DA, Johnson ND, Bean JA, Jacobs BR. Pediatric peripherally inserted central catheters: Complication rates related to catheter tip location. Pediatrics 2001; 107 : E28.  Back to cited text no. 5
    
6.
Pernar LI, Wolf LL, Seshadri A, Patel V. Impact of a surgeon-led peripherally inserted central venous catheter team on peripherally inserted central venous catheter-related complications and costs. Surg Infect (Larchmt) 2016; 17 : 352-6.  Back to cited text no. 6
    
7.
Leung A, Heal C, Banks J, Abraham B, Capati G, Pretorius C, et al. The incidence of peripheral catheter-related thrombosis in surgical patients. Thrombosis 2016; 2016 : 6043427.  Back to cited text no. 7
    
8.
Li Z, Chen L. Comparison of ultrasound-guided modified seldinger technique versus blind puncture for peripherally inserted central catheter: A meta-analysis of randomized controlled trials. Crit Care 2015; 19 : 64.  Back to cited text no. 8
    
9.
Smith B, Neuharth RM, Hendrix MA, McDonnall D, Michaels AD. Intravenous electrocardiographic guidance for placement of peripherally inserted central catheters. J Electrocardiol 2010; 43 : 274-8.  Back to cited text no. 9
    
10.
Liu YJ, Dong L, Lou XP, Miao JH, Li XX, Li XJ, et al. Evaluating ECG-aided tip localization of peripherally inserted central catheter in patients with cancer. Int J Clin Exp Med 2015; 8 : 14127-9.  Back to cited text no. 10
    
11.
Zhao R, Chen C, Jin J, Sharma K, Jiang N, Shentu Y, et al. Clinical evaluation of the use of an intracardiac electrocardiogram to guide the tip positioning of peripherally inserted central catheters. Int J Nurs Pract 2016; 22 : 217-23.  Back to cited text no. 11
    
12.
Black IH, Blosser SA, Murray WB. Central venous pressure measurements: Peripherally inserted catheters versus centrally inserted catheters. Crit Care Med 2000; 28 : 3833-6.  Back to cited text no. 12
    
13.
Gaudry E, Vagg P, Spielberger CD. Validation of the state-trait distinction in anxiety research. Multivariate Behav Res 1975; 3 : 331-41.  Back to cited text no. 13
    
14.
Shu Yu K, Su Ru C, Ya Ling T. Depression and anxiety trajectories among women who undergo an elective cesarean section. PLoS One 2014; 1 : 1-8.  Back to cited text no. 14
    
15.
Pedersen C, Leserman J, Garcia N, Stansbury M, Meltzer-Brody S, Johnson J, et al. Late pregnancy thyroid-binding globulin predicts perinatal depression. Psychoneuroendocrinology 2016; 65 : 84-93.  Back to cited text no. 15
    
16.
Lyu J, Zhang J. Characteristics of schizophrenia suicides compared with suicides by other diagnosed psychiatric disorders and those without a psychiatric disorder. Schizophr Res 2014; 155 : 59-65.  Back to cited text no. 16
    
17.
Kuo SY, Tsai SH, Chen SL, Tzeng YL. Auricular acupressure relieves anxiety and fatigue, and reduces cortisol levels in post-caesarean section women: A single-blind, randomised controlled study. Int J Nurs Stud 2016; 53 : 17-26.  Back to cited text no. 17
    
18.
Rossetti F, Pittiruti M, Lamperti M, Graziano U, Celentano D, Capozzoli G, et al. The intracavitary ECG method for positioning the tip of central venous access devices in pediatric patients: Results of an italian multicenter study. J Vasc Access 2015; 16 : 137-43.  Back to cited text no. 18
    
19.
Baldinelli F, Capozzoli G, Pedrazzoli R, Marzano N. Evaluation of the correct position of peripherally inserted central catheters: Anatomical landmark vs. electrocardiographic technique. J Vasc Access 2015; 16 : 394-8.  Back to cited text no. 19
    
20.
Nicholson J, Davies L. Patients’ experiences of the PICC insertion procedure. Br J Nurs 2013; 22 : S16-8, S20-3.  Back to cited text no. 20
    
21.
Bream PR, Gu E. Use of an ECG-based confirmatory technique for bedside placement of reverse-tunneled cuffed dialysis catheters in three morbidly obese patients. Kidney Int 2015; 88 : 633-6.  Back to cited text no. 21
    
22.
Walker G, Chan RJ, Alexandrou E, Webster J, Rickard C. Effectiveness of electrocardiographic guidance in CVAD tip placement. Br J Nurs 2015; 24 : S4, S6, S8-12.  Back to cited text no. 22
    
23.
Nolan ME, Yadav H, Cawcutt KA, Cartin-Ceba R. Complication rates among peripherally inserted central venous catheters and centrally inserted central catheters in the medical Intensive Care Unit. J Crit Care 2016; 31 : 238-42.  Back to cited text no. 23
    
24.
Song L, Li X, Guo Y, Ye M, Ma Y, Guo M, et al. Malposition of peripherally inserted central catheter: Experience from 3012 cancer patients. Int J Nurs Pract 2014; 20 : 446-9.  Back to cited text no. 24
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Material & M...
   Results
   Discussion
   Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed979    
    Printed3    
    Emailed0    
    PDF Downloaded293    
    Comments [Add]    

Recommend this journal