Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 143       
ORIGINAL ARTICLE
Year : 2017  |  Volume : 146  |  Issue : 7  |  Page : 64-69

Exploring quinolone resistance-determining region in Neisseria gonorrhoeae isolates from across India


1 Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
2 Apex Regional STD, Teaching, Training & Research Centre, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
3 Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
4 Department of Dermatology, Lal Bahadur Shastri Hospital, Delhi, India
5 Department of Dermatology, STDs & Leprosy, Postgraduate Institute of Medical Education and Research & Dr Ram Manohar Lohia Hospital, New Delhi, India
6 Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Seema Sood
Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_730_15

Rights and Permissions

Background & objectives: Antimicrobial resistance in Neisseria gonorrhoeae, the causative agent of gonorrhoea, is a subject of worldwide attention. The present study was undertaken to examine the rates of ciprofloxacin resistance, to correlate mutations in gyrA and parC genes with the level of resistance and to look for a variation in mutation pattern, if any, in isolates from across the country. Methods: A total of 113 isolates of N. gonorrhoeae collected from sexually transmitted infection patients in six centres during November 2010 to October 2013 were investigated. Minimum inhibitory concentration (MIC) determination was done by E-test and results interpreted as per Calibrated Dichotomous Sensitivity criteria. DNA sequence analysis of gyrA and parC genes was done. Results: Of the 113 isolates, only three (2.6%) were susceptible whereas eight (7.07%) were less susceptible, 32 [28.3%, 95% confidence interval (CI): 20.4-37.6%] resistant (MIC 1-3 μg/ml) and 70 (61.9%, 95% CI: 52.2-70.7%) exhibited high-level resistance (HLR) (MIC ≥4 μg/ml) to ciprofloxacin. A S91F substitution in gyrA gene was demonstrated in all ciprofloxacin non-susceptible isolates. All resistant and HLR isolates had a double mutation in gyrA gene. However, only 5.7 per cent of HLR isolates showed double mutations in parC gene. One isolate (MIC 32 μg/ml) had a previously undescribed G85D substitution in the parC gene. Interpretation & conclusions: A S91F substitution in gyrA gene was seen in all non-susceptible isolates of N. gonorrhoeae. It may be used as a marker for ciprofloxacin resistance for molecular surveillance approaches to complement the culture-based methods.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed557    
    Printed9    
    Emailed0    
    PDF Downloaded160    
    Comments [Add]    
    Cited by others 1    

Recommend this journal