Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 2006       
ORIGINAL ARTICLE
Year : 2017  |  Volume : 146  |  Issue : 1  |  Page : 56-70

Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34+ cells manipulated with a mixture of cytokines & stromal cell-derived factor 1


1 Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai; Homi Bhabha National Institute (HBNI), Dr. LH Hiranandani Hospital, Mumbai, India
2 Bone Marrow Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
3 Department of Medical Oncology, Dr. LH Hiranandani Hospital, Mumbai, India
4 Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
5 Clinical Trial Unit, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
6 Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan

Correspondence Address:
Jyoti Kode
Advanced Centre for Treatment, Research & Education in Cancer, Chiplunkar Laboratory, Tata Memorial Centre, Kharghar, Navi Mumbai, Mumbai 410 210, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_1319_15

Rights and Permissions

Background & objectives: Next generation transplantation medicine aims to develop stimulating cocktail for increased ex vivo expansion of primitive hematopoietic stem and progenitor cells (HSPC). The present study was done to evaluate the cocktail GF (Thrombopoietin + Stem Cell factor + Flt3-ligand) and homing-defining molecule Stromal cell-derived factor 1 (SDF1) for HSPC ex vivo expansion. Methods: Peripheral blood stem cell (n=74) harvests were analysed for CD34hiCD45lo HSPC. Immunomagnetically enriched HSPC were cultured for eight days and assessed for increase in HSPC, colony forming potential in vitro and in vivo engrafting potential by analyzing human CD45+ cells. Expression profile of genes for homing and stemness were studied using microarray analysis. Expression of adhesion/homing markers were validated by flow cytometry/ confocal microscopy. Results: CD34hiCD45lo HSPC expansion cultures with GF+SDF1 demonstrated increased nucleated cells (n=28, P<0.001), absolute CD34+ cells (n=8, P=0.021) and increased colony forming units (cfu) compared to unstimulated and GF-stimulated HSPC. NOD-SCID mice transplanted with GF+SDF1-HSPC exhibited successful homing/engraftment (n=24, P<0.001). Microarray analysis of expanded HSPC demonstrated increased telomerase activity and many homing-associated genes (35/49) and transcription factors for stemness/self-renewal (49/56) were significantly upregulated in GF+SDF1 stimulated HSPC when compared to GF-stimulated HSPC. Expression of CD44, CXCR4, CD26, CD14, CD45 and soluble IL-6 in expanded cultures were validated by flow cytometry and confocal microscopy. Interpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1107    
    Printed2    
    Emailed0    
    PDF Downloaded216    
    Comments [Add]    
    Cited by others 2    

Recommend this journal