Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1248       

   Table of Contents      
ORIGINAL ARTICLE
Year : 2016  |  Volume : 144  |  Issue : 6  |  Page : 924-928

Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity


1 Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
2 Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India

Date of Submission13-May-2014
Date of Web Publication28-Apr-2017

Correspondence Address:
Surendra K Sharma
Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmr.IJMR_684_14

Rights and Permissions
   Abstract 

Background & objectives: The N-acetyltransferase 2 (NAT2) gene encodes an enzyme which both activates and deactivates arylamine and other drugs and carcinogens. This study was aimed to investigate the role of NAT2 gene polymorphism in anti-tuberculosis drug-induced hepatotoxicity (DIH).
Methods: In this prospective study, polymerase chain reaction-restriction fragment length polymorphism results for NAT2 gene were compared between 185 tuberculosis patients who did not develop DIH and 105 tuberculosis patients who developed DIH while on anti-tuberculosis drugs.
Results: Frequency of slow-acetylator genotype was commonly encountered and was not significantly different between DIH (82.8%) and non-DIH (77.2%) patients. However, the genotypic distribution of variant NAT2*5/*7 amongst slow-acetylator genotypes was significantly higher in DIH (56%) group as compared to non-DIH (39%) group (odds ratio 2.02; P=0.006).
Interpretation & conclusions: The present study demonstrated no association between NAT2 genotype and DIH in the north Indian patients with tuberculosis.

Keywords: Drug-induced hepatotoxicity - genetic polymorphism - N-acetyltransferase 2 - polymerase chain reaction - restriction fragment length polymorphism - rapid acetylator - slow acetylator


How to cite this article:
Sharma SK, Jha BK, Sharma A, Sreenivas V, Upadhyay V, Jaisinghani C, Singla R, Mishra HK, Soneja M. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity. Indian J Med Res 2016;144:924-8

How to cite this URL:
Sharma SK, Jha BK, Sharma A, Sreenivas V, Upadhyay V, Jaisinghani C, Singla R, Mishra HK, Soneja M. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity. Indian J Med Res [serial online] 2016 [cited 2019 Aug 20];144:924-8. Available from: http://www.ijmr.org.in/text.asp?2016/144/6/924/205358

N-acetyltransferase 2 (NAT2) is an enzyme involved in the detoxification of several carcinogenic arylamines and drugs. NAT2 acetylates isoniazid and forms acetylisoniazid, which is hydrolyzed to monoacetylhydrazine. In case of rapid acetylators, NAT2 rapidly acetylates this compound to form non-toxic diacetylhydrazine; however, slow acetylators encode reduced acetylation activity. Genetic polymorphisms at NAT2 gene are known to be involved with modification of drug metabolism in the liver and thus aid in the predisposition of an individual towards drug-induced hepatotoxicity (DIH)[1]. Available information in the literature regarding the role of NAT2 polymorphism on the risk of DIH development during anti-tuberculosis (TB) treatment is conflicting.

The issue of genetic susceptibility to DIH involving acetylator status in Indian population has been addressed by only two studies[2],[3]. The present study was designed to assess the role of NAT2 polymorphism in conferring susceptibility to DIH during anti-TB treatment.


   Material & Methods Top


In this prospective study, patients aged 16-65 yr were recruited from the outpatient department or the inpatient facility of the department of Medicine, All India Institute of Medical Sciences (AIIMS) Hospital, New Delhi, India, between March 2007 and February 2011. A total of 113 consecutive patients who developed clinical and/or laboratory evidence of DIH, while on anti-TB drugs during the study period constituted the cases (DIH), whereas 201 patients with TB not developing DIH constituted the controls (non-DIH). Written informed consent was obtained from all patients. Institutional Ethics Committee approved the study protocol. The dose levels of anti-TB drugs administrated to the TB patients were as per the earlier published study[4]. Briefly, the diagnostic criteria of DIH included (i) a rise of five times the upper limit of the normal levels (50 IU/l) of serum aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) on one occasion or more than three times (>150 IU/l) on three consecutive occasions; (ii) a rise in the level of serum total bilirubin level >1.5 mg/dl; (iii) an increase in serum AST and/or ALT above pre-treatment values together with anorexia, nausea, vomiting and jaundice; (iv) absence of serological evidence of infection with hepatitis viruses A, B, C or E; and (v) improvement in liver functions (serum bilirubin <1 mg/dl, AST and ALT <100 IU/l) after withdrawal of anti-TB drugs[5]. DIH was diagnosed if any one of the criteria i, ii or iii was present along with criteria iv and v. Non-DIH patients were observed during the same study period with regular follow up of liver function tests.

Serological testing for evidence of human immunodeficiency virus (HIV) 1, 2 infection by enzyme-linked immunosorbent assay was also done. Patients with HIV infection and chronic alcohol-dependant patients who consumed >48 g of alcohol/day for at least one year were excluded from the study. Patients receiving other potentially hepatotoxic drugs (e.g., methotrexate, phenytoin, valproate and fluconazole), pregnant women and patients who did not give written informed consent were also excluded from the study. Patients with DIH satisfying the inclusion criteria were enrolled into the study.

The DNA samples of the DIH and non-DIH patients were from the previously reported study[4]. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) results were compared in 185 non-DIH and 105 DIH patients.

N-acetyltransferase 2 (NAT2) genotyping: DNA was extracted from the patients' peripheral white blood cells using QIAGEN GmbH (Hilden, Germany) DNA maxi manufacturer kit. In brief, 50 μg DNA was used as the template. The primer sequences for NAT2 were: 5′ATG GAC ATT GAA GCA TAT TTT GAA AGA ATT3′ (forward) and 5′AAGGGT TTA TTT TGT TCC TTA TTC TAA AT3′ (reverse). An open source Primer3 program was used for designing PCR primers (http://bioinfo.ut.ee/primer3-0.4.0/primer3). The oligo DNA primers were synthesized by Sigma-Aldich, USA. The cyclic temperature profiles were followed to amplify the NAT2 gene. To ensure complete extension, a seven minute incubation at 72°C was done. Digestion of 500 ng to 1 μg PCR product was carried out in a total volume of 50 μl using appropriate buffer and restriction enzymes[3]. The 895 bp PCR product of the NAT2 gene was subjected to the restriction enzyme digestion by KpnI, TaqI and BamHI, (Fermentas, USA), respectively. The digested products were resolved on a three per cent agarose gel. NAT2*4 represented the wild-type allele and the loss of restriction cutting sites, KpnI, TaqI and BamHI were denoted as NAT2*5, NAT2*6 and NAT2*7 allele, respectively. Restriction pattern of NAT2 genotypes is shown in the [Figure 1]. Individuals with one or two wild-type NAT2*4 alleles were defined as rapid acetylators and those with any two polymorphic alleles as slow acetylators. Nucleotide substitutions may or may not result in an amino acid substitution: C481T, no change (KpnI); G590A, Arg197Gln (TaqI); G857A, Gly286Glu (BamHI).
Figure 1: Panel A represents amplification of N-acetyltransferase 2 gene, Panel B is the representative gel picture of restriction digestion, Panel C representing the restriction pattern of BamHI, KpnI and TaqI restriction sires which are diagnostic for mutation at nucleotide position 857, 481 and 590, respectively. The diagnostic bands for analysis of the mutation sites are shown.

Click here to view


Statistical analysis: The genotypic distribution was compared between cases and controls using Chi-square/Fisher's exact test. The odds ratio (OR) of DIH associated with NAT2 genotype was calculated using logistic regression.


   Results & Discussion Top


[Table 1] shows the NAT2 genotypes in 185 non-DIH and 105 DIH patients with TB. The frequency of a slow-acetylator variant NAT2*5/*7 of NAT2 genotype in DIH (56%) group was significantly higher as compared with the non-DIH (39%) group (OR=2.02, P=0.006). However, the combined frequency of all slow-acetylator variants namely, NAT2*6/*7, NAT2*5/*7, NAT2*5/*6 and NAT2*5/*6/*7 together with an OR of 1.41 [95% confidence interval (CI), 0.76-2.62] was not significant (P=0.25) ([Table 1]). After adjustment with baseline serum albumin, the results for slow-acetylator variant NAT2*5/*7 of NAT2 gene still remained significant with an OR of 1.96 (95% CI, 1.14-3.36), P=0.01 ([Table 1]). The overall NAT2 slow-acetylator genotype after adjustment with baseline serum albumin remained non-significant with an OR of 1.69 (95% CI, 0.84-3.38), P=0.13.
Table 1: N-acetyltransferase 2 (NAT2) genotype distribution in drug-induced hepatotoxicity (DIH) and non-drug-induced hepatotoxicity groups


Click here to view


The NAT2 polymorphisms have been considered as a major risk factor for ATT-induced hepatotoxicity[1]. However, there is no consensus as to whether NAT2 acetylator status could be used as a marker to identify patients at higher risk of developing DIH ([Table 2]). The genotype frequency of NAT2 slow acetylator in south Indian population was reported to be 60 per cent[6]. Roy et al[2] compared the NAT2 gene polymorphism in 33 patients with pulmonary TB who developed DIH, and 33 TB patients who did not develop DIH. Their study did not reveal the significant differences in the NAT2 slow-acetylator allele frequencies between cases and controls, and our findings were in agreement with this study. Bose et al[3] reported a significantly higher frequency of slow-acetylator genotypes in DIH patients (70.73%) when compared to non-DIH patients (44.63%), with OR of 2.99 (95% CI, 1.4-6.2), P=0.0045. A stratified analysis indicated that the slow-acetylator status was associated with DIH amongst the patients with poor nutritional status[3]. However, the overall effect of slow acetylator adjusted for nutritional status was not reported. Further, the study was conducted in only 41 patients who developed DIH. Another study by Lv et al[7] in Chinese population included 89 DIH and 356 non-DIH patients. They also did not find a significant association between NAT2 genotype and DIH. Gurumurthy et al[6] studied a large prospective cohort (850 DIH vs. 2150 non-DIH patients) to determine the association between acetylator phenotype and susceptibility to DIH in south Indian population and found no association of DIH with acetylator status. In our study, DIH developed mostly in those patients who were slow acetylators (82.8%). Amongst the slow-acetylator variants, NAT2*5/*7 was present in high frequency, suggesting that this variant was common in the north Indian population. However, the overall NAT2 genotype was not associated with the development of DIH.
Table 2: Comparison of studies in different ethnicity for N-acetyltransferase 2 polymorphisms in drug-induced hepatotoxicity (DIH) patients


Click here to view


In conclusion, our results showed that NAT2 genotype was not a risk factor for the development of DIH in north Indian TB patients. The discordance between findings of the present study with that of the other studies conducted in Asian populations could be due to the difference in statistical analysis approach to evaluate the risk factor, and different selection criteria used for cases and controls.


   Acknowledgment Top


Authors thank the clinical, laboratory and administrative staff and patients of the AIIMS, New Delhi, for their support. This work was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi (Grant number BT/PR7885/MED/14/1166/2006). The first author (SKS) was supported by JC Bose Fellowship [Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi (No. SB/S2/JCB-04/2013)].

Conflicts of Interest: None.

 
   References Top

1.
Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35 : 883-9.  Back to cited text no. 1
    
2.
Roy B, Chowdhury A, Kundu S, Santra A, Dey B, Chakraborty M, et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. J Gastroenterol Hepatol 2001; 16 : 1033-7.  Back to cited text no. 2
    
3.
Bose PD, Sarma MP, Medhi S, Das BC, Husain SA, Kar P. Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. J Gastroenterol Hepatol 2011; 26 : 312-8.  Back to cited text no. 3
    
4.
Sharma SK, Jha BK, Sharma A, Sreenivas V, Upadhyay V, Jaisinghani C, et al. Genetic polymorphisms of CYP2E1 and GSTM1 loci and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. Int J Tuberc Lung Dis 2014; 18 : 588-93.  Back to cited text no. 4
    
5.
Sharma SK, Singla R, Sarda P, Mohan A, Makharia G, Jayaswal A, et al. Safety of 3 different reintroduction regimens of anti-tuberculosis drugs after development of anti-tuberculosis treatment-induced hepatotoxicity. Clin Infect Dis 2010; 50 : 833-9.  Back to cited text no. 5
    
6.
Gurumurthy P, Krishnamurthy MS, Nazareth O, Parthasarathy R, Sarma GR, Somasundaram PR, et al. Lack of relationship between hepatic toxicity and acetylator phenotype in three thousand South Indian patients during treatment with isoniazid for tuberculosis. Am Rev Respir Dis 1984; 129 : 58-61.  Back to cited text no. 6
    
7.
Lv X, Tang S, Xia Y, Zhang Y, Wu S, Yang Z, et al. NAT2 genetic polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Chinese community population. Ann Hepatol 2012; 11 : 700-7.  Back to cited text no. 7
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Clinical and molecular risk factors of Anti-Tubercular therapy induced hepatitis
Premashis Kar,Rahul Karna,Rajesh Ruttala,Shilpa Arora,Anita Chakravarty,Suresh Kumar
Journal of Clinical and Experimental Hepatology. 2018;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Material & Methods
   Results & Discussion
   Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed702    
    Printed3    
    Emailed0    
    PDF Downloaded263    
    Comments [Add]    
    Cited by others 1    

Recommend this journal