Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 96       
ORIGINAL ARTICLE
Year : 2016  |  Volume : 143  |  Issue : 7  |  Page : 74-81

Preliminary evaluation of indigenous 90 Y-labelled microspheres for therapy of hepatocellular carcinoma


1 Isotope Production & Applications Division, Bhabha Atomic Research Centre, Mumbai, India
2 Advanced Centre for Treatment, Research & Education in Cancer, Navi Mumbai, India
3 Isotope Production & Applications Division, Bhabha Atomic Research Centre, Mumbai, India; Division of Physical & Chemical Sciences, Department of Nuclear Sciences & Applications, International Atomic Energy Agency, 1400 Vienna, Austria

Correspondence Address:
Meera Venkatesh
Division of Physical & Chemical Sciences, Department of Nuclear Sciences & Applications International Atomic Energy Agency, 1400 Vienna, Austria

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-5916.191786

Rights and Permissions

Background & objectives: Yttrium-90 ( 90 Y)-based radioembolization has been employed to treat hepatocellular carcinoma (HCC) as commercial radioactive glass and polymeric resin microspheres. However, in India and other Asian countries, these preparations must be imported and are expensive, validating the need for development of indigenous alternatives. This work was aimed to develop an economically and logistically favourable indigenous alternative to imported radioembolizing agents for HCC therapy. Methods: The preparation of 90 Y-labelled Biorex 70 microspheres was optimized and in vitro stability was assessed. Hepatic tumour model was generated in Sprague-Dawley rats by orthotopic implantation of N1S1 rat HCC cell line. In vivo localization and retention of the 90 Y-labelled Biorex 70 microspheres was assessed for seven days, and impact on N1S1 tumour growth was studied by histological examination and biochemical assays. Results: Under optimal conditions, >95% 90 Y-labelling yield of Biorex70 resin microspheres was obtained, and these showed excellent in vitro stability of labelling (>95%) at seven days. In animal studies, 90 Y-labelled Biorex 70 microspheres were retained (87.72±1.56% retained in liver at 7 days). Rats administered with 90 Y-labelled Biorex 70 microspheres exhibited lower tumour to liver weight ratio, reduced serum alpha-foetoprotein level and greater damage to tumour tissue as compared to controls. Interpretation & conclusions: 90 Y-labelled Biorex 70 microspheres showed stable retention in the liver and therapeutic effect on tumour tissue, indicating the potential for further study towards clinical use.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed854    
    Printed4    
    Emailed0    
    PDF Downloaded220    
    Comments [Add]    
    Cited by others 2    

Recommend this journal