Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 538       

   Table of Contents      
COMMENTARY
Year : 2015  |  Volume : 142  |  Issue : 1  |  Page : 4-6

Inventory of a reservoir : friends & foes


Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India

Date of Web Publication4-Aug-2015

Correspondence Address:
Vineet Ahuja
Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-5916.162085

Rights and Permissions

How to cite this article:
Ahuja V. Inventory of a reservoir : friends & foes. Indian J Med Res 2015;142:4-6

How to cite this URL:
Ahuja V. Inventory of a reservoir : friends & foes. Indian J Med Res [serial online] 2015 [cited 2019 Jun 20];142:4-6. Available from: http://www.ijmr.org.in/text.asp?2015/142/1/4/162085

There has been a dramatic rise in the incidence of inflammatory bowel disease (IBD) which comprises ulcerative colitis (UC) and Crohn's disease (CD) both in western world as well as developing countries, at places doubling every decade [1],[2],[3],[4] . This suggests that environmental factors could be the culprit for immediate ascent of disease incidence. IBD is a multifactorial disease where genetically predisposed individuals develop aberrant innate and adaptive immune responses possibly to commensal bacteria. Genome-wide association studies (GWAS) have shown 163 loci predisposing for IBD and these are enriched for pathways that integrate modulation of intestinal homeostasis with environmental factors [5] . One such factor, which has become the cynosure of attention has been the gut microbiome. Gut microbiome in both health and disease is currently under intense investigation worldwide by scientists and clinicians with diverse expertise and interests.

Another breakthrough over the last decade has been the remarkable advances in our ability to decipher gut microbiome. Studies restricted to cultivable bacteria have been replaced by metagenomic studies which use shotgun-sequencing techniques, which include both DNA-focused metagenomic and RNA-focused metatranscriptome analyses [6] . These high throughput methods are especially useful in integrating microbial diversity and composition with its function and ability to influence gut immune system. Initial efforts were based around the fact that portions of the gene encoding the small subunit 16S ribosomal RNA (rRNA) were highly conserved among bacteria. Methods for analyzing 16S sequencing data from the human microbiome and other environments are now well developed. Hence, a great deal of information on gut microbiome in IBD has emerged from earlier studies based on low resolution surveys of the microbial community to high resolution description using next generation sequencing [6] .

A broad pattern which seems to have emerged following interrogation of the gut microbiome in IBD population has been along the following lines [5] :

(I) Alpha diversity is a measure of species richness or a measure of the total number of species and it has been observed that alpha diversity has been reduced in CD patients. (i) Predominant reduction has been in Firmicutes phylum, (ii) inflamed tissue has demonstrated reduced biodiversity as compared to non affected tissue in the same patient.

Taxonomic shifts may result in reduction of microbiome, which are beneficial and protective against IBD. The microbiome protective mechanisms include prevention of colonization by pathogenic bacteria by niche occupation or by dampening virulence related gene expression, down gradation of intestinal inflammation by expansion of T regulatory cells and consequent abundance of interleukin-10 (IL-10) or production of short chain fatty acids like acetate, propionate and butyrate which direct tolerogenic colonic immune responses. Predominant changes include (i) decrease in Bacterioides (Bacteroidetes phylum) and Firmicutes (ii) decrease in Clostridium, Ruminococcaceae, Bifidobacterium, Latobacillus (Firmicutes phylum), and (iii) decrease in Faecalibacterium prausnitzii in both CD and UC [5],[7] . On the contrary, there are microbial populations which may be enriched and predispose to IBD, these observations include (i) increase in Enterobactericeae particularly adherent invasive Escherichia coli in both UC as well as CD, (ii) increase in Gammaproteobacteria, and (iii) increase in Fusobacterium which are adhesive and invasive seen mostly in UC [5],[7] .

(II) The next important information is functional component of microbiome or also termed as functional composition. Information on functional composition is provided by the next generation sequences rather than low throughput 16 SrRNA studies. While bacterial diversity may change in an individual with time, functional composition remains steady hence highlighting the possible potential of functional composition in defining a disease as compared to taxonomic identification only [6] . The composition changes which have been noted in IBD patients include (i) decrease in short chain fatty acids, (ii) decrease in amino acid production, (iii) increase in sulphate reducing bacteria like Bilophila wadsworthia, and (iv) increase in oxidative stress [5],[7] . These shifts in bacterial complexity, diversity and composition constitute what is termed as dysbiosis, which may be responsible for a shift in the homeostatic healthy flora to a pro-inflammatory microbiome , which can later predispose to intestinal inflammation.

It is interesting and important for us to improve our understanding about dysboisis of bacterial subgroups in IBD patients from diverse geographical regions. The study by Kabeerdoss and colleagues [8] in this issue showed that Bacteroides and Lactobacillus abundance was greater in UC patients compared with controls or CD. Escherichia coli abundance was increased in UC compared with controls. Clostridium coccoides group and C. leptum group abundances were reduced in CD compared with controls. Microbial population did not differ between diseased and adjacent normal mucosa, or between untreated patients and those already on medical treatment. The Firmicutes to Bacteroidetes ratio was significantly decreased in both UC and CD compared with controls, indicative of a dysbiosis in both conditions [8] . In another study done in Vellore by the same investigators [9] , faecal samples of IBD patients and controls were examined for the abundance and diversity of C. leptum group by targeting 16S rRNA gene sequences. Quantitative PCR was used to quantitate C. leptum group and its most prominent constituent, F. prausnitzii. Total numbers of C. leptum group bacteria and F. prausnitzii were reduced in both CD and UC compared with controls. Disease activity did not influence numbers of C. leptum or F. prausnitzii in patients with CD or UC [9] . In one of the two studies from Delhi [10],[11] , faecal samples from UC patients and controls were subjected to fluorescent in situ hybridization in combination with flow cytometry to enumerate the Clostridium cluster population targeted by 16S rRNA gene probe. This was further validated by qPCR, and gas chromatography was also done to evaluate the changes in concentration of major short chain fatty acids (SCFA). A decrease of predominant butyrate producers of clostridial clusters was observed which correlated with the reduced SCFA levels in active UC patients. This was further confirmed by the restoration in the population of some butyrate producers with simultaneous increase in the level of SCFA in UC patients in remission [10] . Another study from north India included 84 patients (72 with UC and 12 with CD) and 65 controls and looked at mucosa-associated bacterial flora by real-time analysis using 16S rRNA-based genus-specific primers [11] . The Bacteroides group was abundant in healthy samples; however, there were significant drops in its concentrations in UC as well as CD patients. Significant decreases in the populations of Lactobacillus, Ruminococcus, and Bifidobacterium in both UC and CD patients were observed [11] . This supported earlier observations proving the hypothesis that loss of commensal organisms profoundly modifies gut mucosal homoeostasis through loss of essential micronutrients (short chain fatty acids) and redox potential. This study also recorded increases in the populations of two subdominant inhabitants, the methanogenic bacterium Methanobrevibacter and sulfate-reducing bacteria for UC as well as CD patients, compared with the levels for the controls [11] . These four Indian studies have reinforced the presence of dysbiosis in IBD both in south Indian as well as north Indian IBD population [8],[9],[10],[11] , however, these studies suffer from certain limitations such as lack of statistical power and non inclusion of treatment-naive patients.

Although 16S sequencing is the most widely used platform for studies of the gut microbiome because of its low cost, it has several evident limitations. Its exactitude depends on whether the observed proportions of 16S gene sequences reflect the proportion of bacteria in the sample, but the 16S gene is subject to PCR primer and amplification bias as well as copy number variation. 16S sequencing generates information on overall microbiome diversity but it does not provide information about the microbial genome members or microbiome function [6] . This particular handicap has been somewhat addressed in recent years. For niches like intestine where information on bacterial communities and reference genomes is available, it is possible to infer an approximate metagenome using methods such as PICRUSt [12] . This technology couples functions of gene products encoded by the most closely related sequenced genomes with observed taxonomic profiles to produce a functional profile. Most importantly, 16S sequencing identifies only bacterial components of a community, not other intestinal resident groups like archaea, fungi and viruses. Metagenome or metatranscriptome sequencing, also referred to as shotgun sequencing, DNA-seq, or RNA-seq, is the process of sequencing the entire nucleotide pool isolated from a culture-independent sample and hence it will include fungal genomes as well as viromes. Whole metagenome sequencing eliminates the danger of missing whole kingdoms or bacterial clades as a result of PCR primer bias.

A recent study addressed most of these limitations and in addition is the largest IBD-related microbiome study to date [13] . The multicenter study included new-onset CD paediatric cohort. The strengths of this study lay in the sampling prior to treatment, the size of the cohort, and the concurrent sampling of different sites, including multiple mucosal tissue sites, and the luminal content as stool samples. An axis defined by an increased abundance in bacteria which includes Enterobacteriaceae, Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae, and decreased abundance in Erysipelotrichales, Bacteroidales, and Clostridiales correlated strongly with the disease status [13] .

These studies have essentially provided proof of concept for microbial dysbiosis across different geographical regions and ethnicities. The exciting part is that these provide a roadmap for therapeutic manipulation of human intestinal microbiome and one such modality can be faecal microbiota transplantation (FMT). FMT is also known as intestinal microbiota transfer or faecal bacteriotherapy. FMT comprises the administration of a faecal solution from a donor into the intestinal tract of a recipient. To date, most clinical experience has focused on the use of FMT in patients with relapsing Clostridium difficile infection. FMT has shown efficacy in randomized controlled trials for therapy of recurrent C. difficile diarrhoea [14] . It has been shown to be beneficial in case series of patients with inflammatory bowel disease, irritable bowel syndrome, idiopathic thrombocytopenic purpura, multiple sclerosis, chronic fatigue syndrome, insulin resistance state and type 2 diabetes mellitus [14] . It has potential for application in treatment of obesity as well as nonalcoholic steatohepatitis. Restoration of physiological balance of intestinal microbiota presents a novel cost-effective interventional modality for treating diseases of public health importance ranging from IBD to metabolic as well as neurological autoimmune diseases. This is probably where the road which started with enumeration of gut members and then identifed friends and foes in health and disease amongst them may wind up.

 
   References Top

1.
Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142 : 46-54. e42; quiz e30.  Back to cited text no. 1
    
2.
Ahuja V, Tandon RK. Inflammatory bowel disease in the Asia-Pacific area: a comparison with developed countries and regional differences. J Dig Dis 2010; 11 : 134-47.  Back to cited text no. 2
    
3.
Makharia GK, Ramakrishna BS, Abraham P, Choudhuri G, Misra SP, Ahuja V, et al. Indian Society of Gastroenterology Task Force on Inflammatory Bowel Disease. Survey of inflammatory bowel diseases in India. Indian J Gastroenterol 2012; 31 : 299-306.  Back to cited text no. 3
    
4.
Ahuja V, Tandon RK. Inflammatory bowel disease: the Indian augury. Indian J Gastroenterol 2012; 31 : 294-6.  Back to cited text no. 4
[PUBMED]    
5.
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146 : 1489-99.  Back to cited text no. 5
    
6.
Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146 : 1437-48.   Back to cited text no. 6
    
7.
Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity 2014; 40 : 843-54.  Back to cited text no. 7
    
8.
Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 2015; 142 : 23-32.   Back to cited text no. 8
    
9.
Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna BS. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol 2013; 13 : 20.  Back to cited text no. 9
    
10.
Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol 2013; 19 : 3404-14.  Back to cited text no. 10
    
11.
Verma R, Verma AK, Ahuja V, Paul J. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 2010; 48 : 4279-82.   Back to cited text no. 11
    
12.
Langille MG, Zaneveld J, Caporaso JG, Mc Donald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31 : 814-21.  Back to cited text no. 12
    
13.
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 : 382-92.  Back to cited text no. 13
    
14.
Sha S, Liang J, Chen M, Xu B, Liang C, Wei N, et al. Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children. Aliment Pharmacol Ther 2014; 39 : 1003-32.  Back to cited text no. 14
    



This article has been cited by
1 Fermented carrot juice attenuates type 2 diabetes by mediating gut microbiota in rats
Rongkang Hu,Feng Zeng,Linxiu Wu,Xuzhi Wan,Yongfang Chen,Jiachao Zhang,Bin Liu
Food & Function. 2019;
[Pubmed] | [DOI]
2 Site specific expression of CXCL-12 and its regulation by miR-200a in ulcerative colitis
Jaishree Paul,Raju Ranjha,Surbhi Aggarwal,Vineet Ahuja
Gastroenterology & Hepatology: Open Access. 2018; 9(6)
[Pubmed] | [DOI]
3 Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India
Saurabh Kedia,Ritika Rampal,Jaishree Paul,Vineet Ahuja
Journal of Gastroenterology. 2016;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References

 Article Access Statistics
    Viewed924    
    Printed9    
    Emailed0    
    PDF Downloaded323    
    Comments [Add]    
    Cited by others 3    

Recommend this journal