Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 2336       

   Table of Contents      
ORIGINAL ARTICLE
Year : 2014  |  Volume : 140  |  Issue : 1  |  Page : 96-101

Grass pea consumption & present scenario of neurolathyrism in Maharashtra State of India


1 Food & Drug Toxicology Centre (ICMR), Hyderabad, India
2 Department of Clinical Studies, National Institute of Nutrition (ICMR), Hyderabad, India

Date of Submission15-Feb-2013
Date of Web Publication4-Sep-2014

Correspondence Address:
Arjun L Khandare
Scientist E, FDTRC, National Institute of Nutrition (ICMR) PO Jama-I-Osmania, Hyderabad 500 007
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 25222783

Rights and PermissionsRights and Permissions
   Abstract 

Background & objectives: Neurolathyrism is a non progressive motor neuron disorder engendered by the prolonged over-consumption of Lathyrus sativus (grass pea) seeds which contain a neurotoxic amino acid, β-N oxalyl- L-α, β-diaminopropionic acid (β-ODAP). It is characterized by spastic paraparesis in the hind limbs. The present study was conducted in 105 households (HHs) of Gondia district in Maharashtra, India, where grass pea is cultivated and consumed to assess the health implication of its consumption.
Methods: Across-sectional survey was carried out in 105 HHS in five villages and grass pea samples were collected for β-ODAP estimation. Amino acid analysis was also done, neurolathyrism cases were identified by snowball sampling method and neurological examination was carried out.
Results: The study revealed that 61 per cent of population was consuming this pulse as a part of diet. β-ODAP concentration in grass pea was high in Bora village (1254.5 ± 528.21 mg %) and less in Malgaon village (413.6±415.79 mg %). The nutritional status of the people was within the normal range (BMI 18± 3.40 kg/m [2] in the surveyed households. Consumption of grass pea was observed to be less than 25g.
Conclusions: The cases of neurolathyrism declined in all the studied villages due to reduced β-ODAP exposure through Lathyrus sativus consumption, however, the grass pea was cultivated and consumed in Gondia district of Maharashtra State.

Keywords: β-ODAP - grass pea - khesri dal - Lathyrus sativus - neurolathyrism


How to cite this article:
Khandare AL, Babu J J, Ankulu M, Aparna N, Shirfule A, Rao G S. Grass pea consumption & present scenario of neurolathyrism in Maharashtra State of India. Indian J Med Res 2014;140:96-101

How to cite this URL:
Khandare AL, Babu J J, Ankulu M, Aparna N, Shirfule A, Rao G S. Grass pea consumption & present scenario of neurolathyrism in Maharashtra State of India. Indian J Med Res [serial online] 2014 [cited 2019 Oct 19];140:96-101. Available from: http://www.ijmr.org.in/text.asp?2014/140/1/96/139999

Lathyrus sativus (grass pea/khesari dal) is a high yielding; drought-tolerant legume crop containing 31 per cent protein, 41 per cent carbohydrate, 17 per cent total dietary fiber [1],[2] . The protein content of grass pea seeds is higher compared to other legume seeds [3] . Grass pea is cultivated and consumed in India, Nepal, Bangladesh and in many parts of Africa that are prone to recurrent droughts [4],[5] . It is often considered a lifesaver crop [6] or as insurance crop [7] . It is an abundant source of protein for human and animal consumption [7] . Presence of homoarginine (a source of potent vasodilator nitric oxide) in grass pea can be used to explore its inherent potential to treat cardiovascular disorders associated with vascular endothelial function [8] .

The major grass pea growing States in India are Bihar, Madhya Pradesh, Maharashtra, West Bengal and Chhattisgarh. Other States of Uttar Pradesh, Rajasthan, Gujarat, Andhra Pradesh and Karnataka produce this pulse in a limited quantity. People from lower economic sections consumed this legume crop as a staple food during famines and floods.

Excessive consumption of grass pea containing β -N oxalyl- L-α, β-diaminopropionic acid (β-ODAP)[9] , analogue of glutamate for 2-3 months as a monotonous diet, leads to an irreversible motor neuron disorder, neurolathyrism [10] . Pathological symptoms are caused by symmetrical degeneration of pyramidal tracts in the spinal cord [11] , and loss of pyramidal cells in the motor cortex of the brain leads to the impairment of the hind limb movements [12] . r0eports suggest that β-ODAP is metabolized in human beings[13] . However, metabolic pathway of β-ODAP in human beings is not exclusively known. Earlier epidemiological studies have depicted illiteracy, poverty and young age as major risk factors for neurolathyrism [14],[15] .

The harmful effects depend on quantity of the pulse consumed, its β-ODAP content, method of cooking; and nutritional status of the individual. Susceptibility to neurolathyrism varies from person to person even within a family.

The National Institute of Nutrition (NIN), Hyderabad, Andhra Pradesh, India, has undertaken this study to assess the grass pea cultivation and its health implications in Gondia district of Maharashtra State in India with the following objectives. (i) quantity of the pulse consumed and exposure of β-ODAP per day, (ii) its health implications, (iii) nutritional status of the consumers, and (iv) to determine the level of β-ODAP in the grass pea samples.


   Material & Methods Top


A cross-sectional survey was carried out in the Gondia district of Maharashtra State, India, in 2012, where cultivation of grass pea is common. A total of 105 households (HHs) in five villages with a population of 496 were surveyed. Of 907 total villages in the district, the five villages were selected based on the highest cultivation of Lathyrus sativus. This study was approved by the Ethics Committee of the National Institute of Nutrition, Hyderabad, India.

Diet survey was carried out by food frequency questionnaire in 105 households using random sampling method. Nutrition status of the individuals was assessed by measuring height and weight. BMI was calculated using the formula weight/height in meter [2] .

Grass pea samples were collected from all the available households in five villages. The samples were labelled and transported to the NIN, Hyderabad, to measure the β-ODAP content.

Estimation of β-ODAP in L. sativus seeds: Grass pea seed samples were made into a fine powder and sieved in a 0.125 mm sieve. Twenty mg of the powder was taken in different test tubes (duplicates were maintained), 2 ml of distilled water was added, the test tubes were kept in boiling water bath for 15 min, and care was taken to prevent the formation of any precipitate at the bottom of the tubes. The tubes were allowed to cool and were centrifuged at 605 g for 10 min. The supernatant was collected for β-ODAP estimation[16] in aliquots without disturbing the sediment.

Amino acid analysis:

Amino acid analysis was done based on seed weight by hydrolyzing the samples with 6 N HCl in sealed ampoules in an oven at 110 C for 22 h [17] . Excess acid was removed by continuous flash evaporation at 45 °C under reduced pressure. The dried sample was dissolved in citrate buffer (pH 2.2) and aliquot of the sample was loaded into an automatic amino acid analyzer (Biochrom-30, Cambridge, UK). Cysteine and methionine were determined separately after performic acid oxidation. Each amino acid was identified and quantified using externally calibrated standards (50, 100 and 150 pmol/μl) and validated using authentic amino acid standard mixture (National Institute of Standards and Technology, USA, SRM 2389).

Identification of neurolathyrism cases by 'Snowball sampling' method: Snowball sampling of neurolathyrism patients was opted and done by investigating and identifying the subjects from support groups of patients obtained from different households, health authorities (district hospital, community health centre and primary health centre), and through interviews with important people within the community (e.g. village panchayat members). Neurological examination of all subjects was carried out.

A pilot study was done in 10 villages to enquire about the cultivation and consumption of lathyrus, on the basis of results of pilot study five villages were selected by taking 20 households/village for main study. The consumption of Khesari dal was found to be in 60 per cent household; assuming 95 per cent confidence interval, 20 per cent relative precision, the required number of households was 64. Sample size for β-ODAP was calculated to be five.

Statistical analysis: Simple, descriptive statistical tools were used to analyze the survey data. Computer software, statistical package for social sciences (SPSS) - version 10 (SPSS Inc., USA) was used to analyze the data.


   Results & Discussion Top


The literacy rate among the HHs was found to be high (84%). Most of them depended on agriculture as an occupation. The average land holding was less with ST (Scheduled tribe) community when compared with other communities [Table 1]. Due to meager land holding, most of the population in SC, ST communities are working as agricultural labourers. The most commonly cultivated crop in the study area is paddy (Oryza sativa) which is sown in July to October season, and is a major part of diet. Apart from paddy, they are cultivating the flax seed (Linum usitatissimum) as a commercial crop. Grass pea is mainly cultivated during rabbi season as it can withstand extreme temperatures in summer and gives a good yield [Table 1].
Table 1: Demographic information of population studied in Gondia block, Maharashtra

Click here to view


Consumption of grass pea and exposure of β-ODAP0: It was found that 61 per cent of the HH surveyed were consuming grass pea in different forms, and OBC (other backward casts) community was the major consumer as they were cultivating grass pea in their respective land holdings. Six HHs were found to be consuming grass pea above 25 g/day due to their low socio-economic status and lack of land holding. However, in other communities, the quantity of grass pea consumed was less (12-25 g), which was in the form of gravy (cooked grass pea mixed with water until it assumes a semisolid state) alone or in combination with other pulses. Vada (soaked and deep-fried grass pea flour) was found to be the most commonly prepared food stuff with grass pea. Majority of the HH (61%) were aware of the toxic effect of grass pea [Table 2]. Of all the villages surveyed, Bora village was found to be consuming 25 g grass pea/person daily. In other villages, it was less than the 25 g and the quantity of consumption was associated with prices of other legume pulses in the market. The exposure of daily β-ODAP was calculated based on average β-ODAP content in grass pea collected from the different villages. The results showed β-ODAP exposure was 266 mg in Beradipar A which was much less when compared to the high exposure during famine and floods. A few households reported gastrointestinal problems like gas formation and abdominal pain apart from that there were no side effects and health complications.
Table 2: Consumption pattern of grass pea in the studied area

Click here to view


β-ODAP content in grass pea samples: A total of 32 grass pea samples were collected. Maximum concentration of β-ODAP (1254.5th+ 528.21 mg %) was found in samples collected from Bora village, and minimum (102.6±248.38 mg %) was in Menda village [Table 3]. The variability in the β-ODAP content could be due to various environmental factors or their combination [18] .
Table 3: β-ODAP content in grass pea samples collected


Click here to view


Nutrition status: All subjects surveyed were healthy, and no side effects were reported from any household. There was no significant decrease in BMI range in different communities feeding on grass pea. All Red BMI in normal range [Table 4].
Table 4: Community-wise BMI in Gondia district, Maharashtra State

Click here to view


The arginine (8.92±0.19g%) content was high in grass pea and could act as a substrate for nitric oxide production. Among the non-essential amino acids, glutamic acid and aspartic acid were the most representative (17.83±0.14 and 10.63±0.09 g/100 g, respectively). Sulphur amino acids (cysteine and methionine, 0.91±0.01 and 0.99±0.07 g/100 g, respectively) [Table 5] were found to be less compared to other amino acids.

Neurological examination and presence of neurolathyrism: There was no evidence of the spasticity in left lower limb during the gait examination. The sensations and cranial nerves were found to be intact. Upper motor lesion with left leg spasticity was not noticed in the lower limbs in the grass pea consuming HHs. Two old cases of neurolathyrism were found (both above 50 yr of age). In the 105 households surveyed, there was no fresh case of neurolathyrism even though they were consuming grass pea. In earlier studies, 136 cases from Bhandara district of Maharastra [19] which is next to Gondia district, 2500 cases in Rewa district of Madhya Pradesh [20] , 1200 cases in central India [21] , and 41 cases from Unnao district in Uttar Pradesh [22] were reported. The deficiency of sulphur containing amino acids methionine and cysteine [23] in the grass pea causes a reduction in glutathione synthesis, which is a main antioxidant. However, consumption of grass pea along with other food sources compensated for the lack of sulphur containing amino acids in grass pea. This could also be one of the main reasons for fewer incidences.

In conclusion, the present study confirmed that grass pea was being cultivated and consumed in Gondia district of the Maharashtra State. It was also evident from this study that consumption of grass pea in small quantities did not lead to neurolathyrism. The availability of different food sources to even marginal sections of people perhaps increased the nutritional status. If the nutritional value of this pulse can be utilized effectively, it may become a good source of protein.
Table 5: Amino acid composition of L. sativus in study area


Click here to view



   Acknowledgment Top


Author acknowledge the Director, National Institute of Nutrition and the District Collector, Gondia District for their support throughout our study and Food Safety and Standards Authority of India (FSSAI) for the financial assistance.

 
   References Top

1.Akalu G, Johansson G, Nair BM. Effect of processing on the content of â-N-oxalyl- á,â-diaminopropionic acid (â-ODAP) in grasspea (Lathyrus sativus ) seeds and flour as determined by flow injection analysis. Food Chem 1998; 62 : 233-7.  Back to cited text no. 1
    
2.Aletor VA, Abd El-Moneim A, Goodchild AV. Evaluation of the seeds of selected lines of three Lathyrus spp. for â-N-oxalylamino-L-alanine (BOAA), tannins, trypsin inhibitor activity and certain in vitro characteristics. J Sci Food Agri 1994; 65 : 143-51.  Back to cited text no. 2
    
3.Monsoor MA, Yusuf HK. In vitro protein digestibility of Lathyrus pea (Lathyrus sativus) lentil (Lens culinaris) Lens culinaris) and chickpea (Cicer arietinum). Int J Food Sci Technol 2002; 37 : 97-9.   Back to cited text no. 3
    
4.Stodolak B, Starzynska-Janiszewska A. The influence of tempeh fermentation and conventional cooking on anti-nutrient level and protein bioavailability (in vitro test) of grass-pea seeds. J Sci f0 ood a0 gri 2008; 88 : 2265-70.   Back to cited text no. 4
    
5.Grass pea and neurolathyrism (Lathyrus sativus L.). In: Barceloux DG. Medical toxicology of natural substances: foods, fungi, medicinal herbs, toxic plants, and venomous animals. Hoboken, NJ: John Wiley; 2008. Chapter 8, p. 62-6.   Back to cited text no. 5
    
6.Lambein F, Kuo YH, Ikegami F, Kusama-Eguchi K, Enneking D. In: Kharkwal MC, editor. Food legumes for nutritional security and sustainable agriculture, vol. 1. New Delhi: Indian Society of Genetics and Plant Breeding. Indian Council of Agricultural Research; 2008. p. 422-32.  Back to cited text no. 6
    
7.Campbell CG. Grass pea (Lathyrus sativus L.) Promoting the conservation and use of underutilized and neglected crops. vol. xviii. Rome: Institute of Plant Genetics and Crop Plant Research, Gatersleben Germany/International Plant Genetic Resources Institute; 1997.  Back to cited text no. 7
    
8.Rao SL. A look at the brighter facets of â-N-oxalyl-L-á,â-diaminopropionic acid, homoarginine and the grass pea. Food Chem Toxicol 2011; 49 : 620-2.  Back to cited text no. 8
[PUBMED]    
9.Spencer PS, Roy DN, Ludolph A, Hugon J, Dwivedi MP, Shaumburg HH. Neurolathyrism: Evidence for role of the neuroexcitatory amino acid BOAA. Lancet 1986; 2 : 1066-7.  Back to cited text no. 9
    
10.Spencer PS, Schaumburg HH. Neurolathyrism: a neurotoxic disease. Neurobehav Toxicol Teratol 1983; 5 : 625-9.  Back to cited text no. 10
[PUBMED]    
11.Striefler M, Cohn DF, Hirano A, Schujman E. The central nervous system in a case of neurolathyrism. Neurology 1977; 27 : 1176-8.  Back to cited text no. 11
[PUBMED]    
12.Haimanot RT, Kidane Y, Wuhib E, Kalissa A, Alemu T, Zein ZA, et al. Lathyrism in rural north western Ethiopia: a highly prevalent neurotoxic disorder. Int J Epidemiol 1990; 19 : 664-72.  Back to cited text no. 12
    
13.Pratap Rudra MP, Sing MR, Junaid MA, Jyothi P, Rao SL. Metabolism of dietary ODAP in humans may be responsible for the low incidence of neurolathyrism. Clin Biochem 2004; 37 : 318-22.   Back to cited text no. 13
    
14.Balache C, Lambein F. The Lathyrus/lathyrism controversy. Grain Legumes 2009; (54) : 4.   Back to cited text no. 14
    
15.Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P. Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine. Lancet 2003; 362 : 1808-10.  Back to cited text no. 15
    
16.Rao SL. A sensitive and specific colorimetric method for the determination of á,â-diaminopropionic acid and the Lathyrus sativus neurotoxin. Anal Biochem 1978; 86 : 386-96.  Back to cited text no. 16
[PUBMED]    
17.Darragh AJ, Moughan RJ. The effect of hydrolysis time on amino acid analysis. J AOAC Int 2005; 88 : 888-93.  Back to cited text no. 17
    
18.Jiao CJ, Jiang JL, Ke LM, Cheng W, Li FM, Lizx, et al. Factors affecting â-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol 2011; 49 : 543-9.  Back to cited text no. 18
    
19.Kulkarni SW, Attal HC, Choubey BS. Kulkarniepidemiologic SW. An epidemiologic study of lathyrism in Amgaon block, Bhandara district. Indian J Med Res 1975; 66 : 602-10.  Back to cited text no. 19
    
20.Dwivedi MP, Prasad BG. An epidemiological study of Lathyrus in the district of Rewa, Madhya Pradesh. Indian J Med Res 1964; 52 : 81-116.  Back to cited text no. 20
[PUBMED]    
21.Shourie KL. An outbreak of Lathyrus in central India. Indian J Med Res1945; 33 : 239-47.  Back to cited text no. 21
[PUBMED]    
22.Misra UK, Sharma VP, Singh VP. Clinical aspects of neurolathyrism in Unnao, India. Paraplegia 1993; 31 : 249-54.  Back to cited text no. 22
    
23.Lisiewska Z, Kmiecik W, Korus A. Content of nitrogen compounds in raw and preserved seeds of grass pea (Lathyrus sativus L.). Eur Food Res Technol 2001; 213 : 343-8.  Back to cited text no. 23
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Results & Discussion
   Acknowledgment
   Material & Methods
    References
    Article Tables

 Article Access Statistics
    Viewed1071    
    Printed17    
    Emailed0    
    PDF Downloaded283    
    Comments [Add]    

Recommend this journal