Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1406       
ORIGINAL ARTICLE
Year : 2013  |  Volume : 137  |  Issue : 6  |  Page : 1093-1101

Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone


1 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Department of Physiology, Medical Faculty Universiti Kebangsaan Malaysia, Malaysia
2 Department of Orthopedic & Traumatology, Medical Faculty Universiti Kebangsaan Malaysia, Malaysia
3 Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
4 Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Malaysia

Correspondence Address:
Ruszymah Bt. Hj Idrus
Head, Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, 56000, Cheras, Kuala Lumpur
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 23852290

Rights and PermissionsRights and Permissions

Background & objectives: Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering. Methods: HA-SMC and TCP/HA-SMC constructs were induced in the osteogenic medium for three weeks prior to implantation in nude mice. The HA-SMC and TCP/HA-SMC constructs were implanted subcutaneously on the dorsum of nude mice on each side of the midline. These constructs were harvested after 8 wk of implantation. Constructs before and after implantation were analyzed through histological staining, scanning electron microscope (SEM) and gene expression analysis. Results: The HA-SMC constructs demonstrated minimal bone formation. TCP/HA-SMC construct showed bone formation eight weeks after implantation. The bone formation started on the surface of the ceramic and proceeded to the centre of the pores. H&E and Alizarin Red staining demonstrated new bone tissue. Gene expression of collagen type 1 increased significantly for both constructs, but more superior for TCP/HA-SMC. SEM results showed the formation of thick collagen fibers encapsulating TCP/HA-SMC more than HA-SMC. Cells attached to both constructs surface proliferated and secreted collagen fibers. Interpretation & conclusions: The findings suggest that TCP/HA-SMC constructs with better osteogenic potential compared to HA-SMC constructs can be a potential candidate for the formation of tissue engineered bone.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1395    
    Printed24    
    Emailed0    
    PDF Downloaded469    
    Comments [Add]    

Recommend this journal