Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 3059       
ORIGINAL ARTICLE
Year : 2012  |  Volume : 135  |  Issue : 5  |  Page : 630-635

Antinociceptive effects of gabapentin & its mechanism of action in experimental animal studies


1 Department of Pharmacology, Eskisehir Osmangazi University, Medical School, Eskisehir, Turkey
2 Department of Biostatistics, Eskisehir Osmangazi University, Medical School, Eskisehir, Turkey

Correspondence Address:
Fatma Sultan Kilic
Professor, Department of Pharmacology, Eskisehir Osmangazi University, School of Medicine, 26480, Eskisehir
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions

Background & objectives: Several studies have shown the possible analgesic effects of gabapentin, widely used as an antiepileptic. Thus, clinical studies have been carried out especially for neuropathic syndroms. This study was undertaken to investigate experimentally whether gabapentin has analgesic effects in mice and rats. Methods: The mice were divided into 10 groups (n=7) with various treatments to assess central and peripheral antinociceptive activity of gabapentin. Hot plate, tail clip and tail flick tests were applied for the investigation of central antinociceptive activity and the writhing test was applied for the investigation of peripheral antinociceptive activity. In addition, we also evaluated the levels of PGE 2 and nNOS on perfused hippocampus slices of rats. Results: Gabapentin showed a peripheral antinociceptive effect at all doses and a central antinociceptive effect at 30mg/kg dose. While the L-NAME and cyproheptadine changed the central and peripheral effects of gabapentin, naloxone did not change these effects. In vitro studies showed that gabapentin significantly increased nNOS level. PGE 2 and nNOS were found to have an important role in the antinociceptive effects of gabapentin at all doses and its combinations with L-NAME, cyproheptadine, indomethacine, and naloxone. As expected, PGE 2 levels decreased in all groups, while nNOS levels increased, which is believed to be an adaptation mechanism. Interpretation & conclusions: Our findings indicate that arachidonate, nitrergic and serotonergic systems play an important role in the antinociceptive activity of gabapentin except for the opioidergic system. Additionally, this effect occured centrally and peripherally. These effects were also mediated by nNOS and PGE2.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1293    
    Printed54    
    Emailed0    
    PDF Downloaded372    
    Comments [Add]    

Recommend this journal