Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1481       

   Table of Contents      
ORIGINAL ARTICLE
Year : 2012  |  Volume : 135  |  Issue : 3  |  Page : 422-428

Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima


1 School of Studies in Biochemistry & Biotechnology, Jiwaji University, Gwalior, India
2 Defence Research & Development Establishment (DRDE), Gwalior, India
3 School of Studies in Biochemistry & Biotechnology, Jiwaji University; R&D Division, M/S Tropilite Foods Pvt. Ltd., Gwalior, India

Date of Submission14-Jan-2010
Date of Web Publication3-May-2012

Correspondence Address:
G.B.K.S. Prasad
SOS in Biochemistry & Biotechnology, Jiwaji University, Gwalior 474 011
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions
   Abstract 

Background & objectives: Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats.
Methods: Oral administration of 10 per cent fructose solution to Wistar rats (n=5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration.
Results: Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats.
Interpretation & Conclusions: The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

Keywords: Diabetes mellitus - fructose - hyperglycaemia - hyperlipidaemia - Spirulina maxima


How to cite this article:
Jarouliya U, Zacharia J A, Kumar P, Bisen P S, Prasad G. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima. Indian J Med Res 2012;135:422-8

How to cite this URL:
Jarouliya U, Zacharia J A, Kumar P, Bisen P S, Prasad G. Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima. Indian J Med Res [serial online] 2012 [cited 2019 Nov 14];135:422-8. Available from: http://www.ijmr.org.in/text.asp?2012/135/3/422/95633

Diabetes mellitus is a chronic degenerative disorder with increasing morbidity and mortality, characterized by hyperglycaemia and often associated with hyperlipidaemia and oxidative stress. Diabetes is the metabolic disorder, which can affect nearly every organ system in the body and is generally viewed as a clinical syndrome with variable phenotypic expression rather than a single disorder with a specific aetiology. It is often associated with hyperlipidaemia and hypertension [1] . Patients with type 2 diabetes suffer from chronic oxidative stress leading to complications [2] .

Emerging evidence from recent epidemiological and biochemical studies suggest that exposure to high fructose leads to rapid stimulation of lipogenesis and triglyceride accumulation, which in turn contributes to reduced insulin sensitivity and hepatic insulin resistance/glucose intolerance [3] . Fructose feeding has been shown to promote oxidative damage and exert detrimental effects by reducing antioxidant defenses, and increasing generation of free radicals [4] .

Spirulina maxima , a filamentous edible alga, is a cyanobacterium belongs to the family Oscillatoriaceae, which blooms well in alkaline waters [5] . It is characterized by high protein content (60-70%) and also contains considerable levels of chlorophyll, carotenoids, phycocyanin and vitamins [6] . Besides the organism's role in the treatment of protein malnutrition disorders, it also reduced body weight in obese humans [7] and cholesterol level [8] in experimental rats. S. maxima prevented fatty liver in rats after the administration of fructose rich purified diet [9] , or by carbon tetrachloride treatment [10] . S. maxima has also been shown to decrease vascular tone of aortic rings [11] . The present study was undertaken to investigate the protective and therapeutic potential, if any, of S. maxima against fructose induced diabetes and other metabolic abnormalities in Wistar rats.


   Material & Methods Top


Animals: Randomly bred healthy male rats (Rattus norvegicus; Wistar strain; age: 10-14 wk; weight: 180-220 g) were obtained from the animal facility of Defence Research & Development Establishment, Gwalior (MP). The rats were housed in polypropylene cages, maintained on standard pellet diet (M/s Ashirwad Industry, Mohali, India) and water ad libitum. After randomization into various groups and before initiation of experiment, the rats were acclimatized for a period of seven days to laboratory conditions [temperature (25 ± 2°C) and 12 h light/dark cycle]. The study protocol was approved by Institutional Animal Ethics Committee (IHEC-09/2008), Jiwaji University, Gwalior during 2008.

All the chemicals used in the experiments were of analytical grade, the kits and chemicals used in this experiment were purchased from E. Merck India Limited (Mumbai, India).

Culturing of Spirulina maxima: The pure culture of S. maxima was obtained from National Facility for Blue Green Algae, Indian Agriculture Research Institute, New Delhi. The culture was grown in Zarrouk's medium (pH 8.5-9.5) under controlled conditions of light and temperature (2500 lux, 16/8 h light/dark, at 30˚C). The cultures were maintained for 20 days and harvested after exponential algal growth phase. The biomass was filtered through a screen filter of pore size 305 nm. The Spirulina mat was collected in the drying trays and dried at 40˚C for 12 h.

Induction of hyperglycaemia and hyperlipidaemia in rats: Hyperglycaemia and hyperlipidaemia were induced in Wistar rats by feeding 10 per cent fructose solution in drinking water for 30 days. All biochemical parameters in blood/plasma were estimated at an interval of 10 days. Animals were divided into seven groups of five rats each and treated as below: Group I: Healthy rats (Normal control); Group II: Hyperglycaemic rats without any treatments (Diabetic control, DC); Group III: Hyperglycaemic rats administered with 5 per cent S. maxima extract (SM) once daily for the following 30 days (Diabetic rats treated with 5% SM); Group IV: Hyperglycaemic rats co-administered with 10 per cent fructose solution continuously (CF) and 5 per cent S. maxima extract once daily for the following 30 days (Diabetic rats treated with 5% SM and 10% CF concurrently); Group V: Hyperglycaemic rats administered with 10 per cent S. maxima extract once daily for the following 30 days (Diabetic rats treated with 10% SM); Group VI: Hyperglycaemic rats co-administered with 10 per cent fructose solution and 10 per cent S. maxima extract once daily for the following 30 days (Diabetic rats treated with 10% SM and 10% CF concurrently); Group VII: Hyperglycaemic rats administered with metformin (500 mg/kg) once daily for the following 30 days (Metformin).

The dried S. maxima powder was suspended in distilled water to achieve a concentration of 5 and 10 per cent (i.e. 5 and 10 g of Spirulina powder was suspended in 100 ml of distilled water). The homogenous suspension of S. maxima was prepared and administered orally with a dose of 1.0 ml/day. The doses were administered once a day to experimental rats with the help of intragastric tube (cannula).

Blood collection
: The animals were kept on 6-8 h fasting and then the blood samples (0.5-1.0 ml) were collected from retro orbital plexus of rat eyes under mild ether anaesthesia once before and at 10 day intervals during the course of study for biochemical analyses. Plasma was separated, aliquoted and used for analyses of glucose, triglyceride and cholesterol, remaining plasma sample was assayed for HDL cholesterol, LDL, VLDL and for serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT). All estimations were carried out on freshly collected blood/plasma samples.

Biochemical analyses: Blood glucose was estimated by glucose oxidase-peroxidase method [12] . Plasma triglyceride was estimated by glycerol-3-phosphate oxidation-peroxidase method [13] . Total cholesterol was estimated by cholesterol-oxidase and p-amino-phenazone method [14] . HDL-cholesterol level was estimated by phosphotungstate method [15] . The LDL and VLDL levels were calculated by Friedewald's equation. Serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT) were estimated by 2, 4-dinitrophenyl hydrazine (2, 4-DNPH) method [16] .

Statistical analysis: Data were analyzed using one-way ANOVA (Bonferroni t-test) employing Sigma Stat, statistical software, version 1.0 (Jandal Corporation, USA).


   Results Top


Fructose administration to experimental animals (Groups II-VII) resulted in hyperglycaemia (190-235 mg/dl), hypertriglyceridaemia (107-156 mg/dl), hypercholesterolaemia (80-112 mg/dl) and significant increases in liver function markers (SGPT and SGOT).

Effect of S. maxima administration on blood glucose level: At a dose of 5 per cent S. maxima, the reduction in blood glucose levels observed was 60 per cent (215-87 mg/dl) (P<0.001) and with 10 per cent S. maxima, the reduction was 54 per cent (202-92 mg/dl) (P<0.001) at the end of the 30 days therapy when compared to the pre-treatment levels. The diabetic rats administered with S. maximaand 10 per cent fructose in drinking water concurrently showed decrease in blood glucose levels by 45-48 per cent. When the diabetic rats were treated with metformin (500 mg/kg), the blood glucose level was reduced to 46 per cent of pre-treatment levels after 30 days of the therapy [Figure 1].
Figure 1: Effect of S. maxima administration on blood glucose level. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Click here to view


Effect of S. maxima administration on triglyceride level: Administration of 5 or 10 per cent S. maximasuspension resulted in a significant (P<0.001) reduction in plasma triglyceride level by 51 and 39 per cent of pre-treatment levels of 162 and 136.18 mg/dl, respectively. Concurrent administration of S. maxima and 10 per cent fructose to hypertriglycedaemic rats also exhibited significant decrease in plasma triglyceride level by 28-34 per cent of pre-treatment levels. In metformin (500 mg/kg) treated group, the triglyceride level was reduced by 43 per cent of pre-treatment levels within 30 days of the therapy [Figure 2].
Figure 2: Effect of S. maxima administration on triglyceride level. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Click here to view


Effect of S. maxima administration on cholesterol level: Administration of S. maxima suspension (5 or 10%) to hypercholesterolaemic rats reduced the cholesterol level by 33 per cent of pre-treatment levels. Co-administration of S. maxima and 10 per cent fructose in drinking water resulted in reduction in cholesterol level by 33-36 per cent of pre-treatment levels. Treatment of diabetic rats with metformin (500 mg/kg) reduced the cholesterol level by 55 per cent of pre-treatment levels [Figure 3].
Figure 3: Effect of S. maxima administration on cholesterol level. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.01, **<0.001 compared to NC group.

Click here to view


Effect of S. maxima administration on HDL-C, LDL and VLDL levels: Administration of S. maxima to diabetic rats significantly (P<0.001) reduced the LDL and VLDL levels by 79 and 23 per cent of pre-treatment levels, respectively, and elevated the HDL-C level by 55 per cent. Co-administration of S. maxima and 10 per cent fructose in drinking water also reduced the LDL and VLDL levels by 39 and 28 per cent of pre-treatment levels and elevated the HDL-C level by 43 per cent of pre-treatment levels. On the other hand, administration of metformin (500 mg/kg) to diabetic rats reduced the LDL and VLDL levels by 80.10 and 49.18 per cent, respectively and elevated the HDL-C level by 53.76 per cent compared to diabetic control group [Figure 4].
Figure 4: Effect of S. maxima administration on HDL-C, LDL and VLDL levels. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean SE, n=5. P *<0.05, **<0.001 compared to NC group.

Click here to view


Effect of S. maxima administration on body weight: There was no significant intra-group variation in the body weight of animals. The diabetic rats, when treated with either 5 or 10 per cent S. maxima suspensions gained the body weight within 30 days of therapy. There was a significant increase in the body weight of the fructose fed animals (diabetic control) as well as metformin (500 mg/kg) treated group also. In general, the weight gain in animals show a mixed trend and is found to increase on fructose administration or S. maxima or metformin therapies [Figure 5].
Figure 5: Effect of S. maxima administration on body levels. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Click here to view


Effect of S. maxima administration on liver function markers: Analysis of liver function markers viz., SGPT and SGOT activities were significantly (P<0.05) increased in fructose fed rats. Administration of 5 per cent S. maxima to experimental rats reduced the SGPT activity by 24.78 per cent [Figure 6] and SGOT activity by 33.42 per cent of pre-treatment levels [Figure 7]. While concurrent administration of 5 per cent S. maxima and 10 per cent fructose reduced the SGPT and SGOT activities by 16.01 and 29.19 per cent, respectively compared to diabetic control group. Administration of 10 per cent S. maxima suspension to experimental rats reduced SGPT activity by 29 per cent (P<0.05) [Figure 6] and SGOT activity by 33.57 per cent of pre-treatment levels respectively [Figure 7]. Treatment of experimental rats with metformin (500 mg/kg) reduced the SGPT and SGOT activities by 14.44 and 19.60 per cent of pre-treatment levels, respectively.
Figure 6: Effects of S. maxima administration on serum glutamate pyruvate transaminase (SGPT) activity. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Click here to view
Figure 7: Effect of S. maxima administration on serum glutamate oxaloacetate transaminase (SGOT) levels. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Click here to view



   Discussion Top


Wistar rats fed with excessive fructose diet develop hyperglycaemia and hypertriglyceridaemia as well as oxidative damage [17] . The currently available anti-diabetic drug regimens viz.0 sulphonylureas, biguanides and α-glucosidase inhibitors fail to address all the ailments associated with diabetes mellitus and are associated with side reactions[18] . Hence, the search is on for new anti-diabetic compounds with multiple targets and without any side effects. Studies carried out by earlier researchers revealed modulatory effects of Spirulina on lipid and carbohydrate metabolisms [19] . Feeding of 10 per cent fructose solution (in drinking water) to Wistar rats for 30 days resulted in hyperglycaemia and dyslipidaemia in the present study. After 30 days, the animals in groups II, III IV and VII were shifted to normal drinking water and were then administered S. maxima extract, while, the rats in groups IV and VI, were continued with 10 per cent fructose solution along with S. maxima administration. This was done to examine differential effect, if any, on continuous fructose feeding. The present study revealed that administration of S. maxima extract was effective in alleviating the abnormalities of carbohydrate and lipid metabolisms induced by excess fructose administration in Wistar rats.

Several therapeutically important compounds/molecules like ß-carotene, phycocyanin, γ-linolenic acid, etc. identified in S. maxima are shown to possess immunomodulatory and biomodulatory functions [20] . Our study showed that the administration of S. maxima suspension for 30 days to hyperglycaemic rats produced a marked decrease in the blood glucose level and the effect was found superior to metformin as also shown earlier [20] . Mani et al[21] showed a significant decrease in the fasting blood sugar level of patients after 21 days of 2 g/day Spirulina supplementation. In another study the oral administration of 15 mg/kg Spirulina for 45 days to diabetic rats significantly reduced the blood glucose level [22] . This could perhaps be due to high fibre content that interfered with the absorption of glucose [23] . Another theory was based on the possible action of peptides and polypeptides generated by the digestion of Spirulina proteins [24] .

S. maxima was found effective in normalizing the triglyceride levels also. This could be due to decreased VLDL triglyceride production or increased VLDL clearance in the peripheral tissues. The reduction in triglyceride level could also be through lipoprotein lipase, a key enzyme in the metabolism of triglyceride rich lipoprotein [25] .

In our study, cholesterol, LDL and VLDL showed a significant reduction with an increase in HDL-C following S. maxima administration for 30 days. Similar observations were made by Rodriguez-Hernandez [26] , who found that the dietary administration of 5 per cent S. maxima for four weeks to diabetic mice reverted the LDL and VLDL levels to normal level. In another study, rats fed with a 20 per cent water-soluble fraction of Spirulina exhibited a high HDL to LDL ratio and a low fasting serum glucose level compared with rats fed a water insoluble fraction [27] . A significant increase in HDL cholesterol has been reported earlier [28] . This effect might be due to the presence of Gamma-linoleic acid in Spirulina, which prevents accumulation of fats and cholesterol in human body [23] . Ramamoorthy & Premkumari [29] found that Spirulina inhibited jejunal cholesterol absorption and ileal bile acid reabsorption in hypercholesterolaemic patients, proposing that C-phycocyanin present in Spirulina might be responsible for this effect.

Elevated serum activities of SGOT and SGPT reflect hepatocellular necrosis as these are released into the blood after cell membrane damage. Administration of S. maxima for 30 days resulted in significant decrease in plasma SGPT and SGOT activities in fructose fed Wistar rats. The restoration of SGOT and SGPT activities to their respective normal levels after administration of Spirulina showed hepatoprotective effect of this alga. The presence of β-carotene in Spirulina , a fat soluble pigment, the precursor of vitamin A, known for its antioxidant activity helps in the hepatoprotective activity [7] .

In conclusion, the present results showed the anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective effects of Spirulina and further studies are needed to elucidate the underlying mechanism(s).


   Acknowledgment Top


The study was supported in part by research grants from University Grants Commission, DRDO, New Delhi and Biotech Council of Madhya Pradesh, Bhopal.

 
   References Top

1.Pradeepa R, Deepa R, Mohan VJ. Epidemiology of diabetes in India-current perspective and future projections. Indian Med Assoc 2002; 100 : 144-8.  Back to cited text no. 1
    
2.Baynes JW, Thrope SR. The role of oxidative stress in development of complications in diabetes. Curr Opinion Endo 1996; 7 : 277-84.  Back to cited text no. 2
    
3.Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab 2005; 5 : 1-14.  Back to cited text no. 3
    
4.Faure P, Rossini E, Lafond JL, Richard MJ, Favier A, Halimi S. Vitamin E improves the free radical defense system potential and insulin sensitivity of rat fed high fructose diets. J Nutr 1997; 127 : 103-7.  Back to cited text no. 4
    
5.Ciferri O. Spirulina the edible micro organism. Microbio Rev 1983; 47 : 551-78.  Back to cited text no. 5
    
6.Kulshrestha A , Zacharia A, Jarouliya U, Bhadauriya P, Prasad GBKS, Bisen, PS. Spirulina in health care management. Curr Phramaceut Biotech 2008; 9 : 400-5.  Back to cited text no. 6
    
7.Becker EW, Jakober B, Luft D, Schmuling RM. Clinical and biochemical evaluations of the algae Spirulina with regards to its application in treatment of obesity: A double blind cross over study. Nutr Rep Int 1986; 4 : 565-74.  Back to cited text no. 7
    
8.Itawa K, Inayama T. Effect of Spirulina platensis on plasma lipoprotein lipase activity in fructose induced hyperlipidemic rats. J Nutr Sci Vitaminol 1990; 36 : 165-71.  Back to cited text no. 8
    
9.Gonzalez De Rivera C, Miranda-Zamora R, Pardes-Carbajal MC, Juarez Oropeza, MA. Preventive effects of Spirulina maxima on the fatty liver induced by a fructose rich diet in the rat, a preliminary report. Life Sci 1993; 53 : 57-61.  Back to cited text no. 9
    
10.Torres-Duran PV, Miranda-Zamora R, Paredes-Carbajal MC, Diaz-Zagoya JC, Juarez-Oropeza MA. Studies on the preventive effect of Spirulina maxima on fatty liver development induced by carbon tetrachloride, in the rat.J Ethanopharmacol 1999; 64 : 141-7.  Back to cited text no. 10
    
11.Paredes-Carbajal MC, Torres-Duran PV, Diaz-Zagoya JC, Juarez-Oropeza MA. Effects of dietary Spirulina maxima on endothelium dependent vasomotor responses of rat aortic rings. Life Sci 1997; 61 : 211-9.  Back to cited text no. 11
    
12.Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Anal Clin Biochem 1969; 24 : 24-30.  Back to cited text no. 12
    
13.Wood D, Backer GD, Faergeman O, Graham I, Mancia G, Pyorala K. Prevention of coronary heart disease in clinical practice. J Euro Heart 1998; 19 : 1434-503.  Back to cited text no. 13
    
14.Tietz textbook of clinical chemistry, 3 rd ed. Philadelphia: W.B. Saunders Company; 1999. p. 809-61.  Back to cited text no. 14
    
15.Lopes-Virella MF, Stone P, Ellis P, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 1977; 23 : 882-4.   Back to cited text no. 15
    
16.Reitman S, Frankel S. A colorimetric method for the determination of serum glutamate oxaloacetic and glutamic pyruvic transaminases. Am J Clinic Pathol 1957; 28 : 56-63.  Back to cited text no. 16
    
17.Nakaya N, Homma Y, Goto Y. Cholesterol lowering effects of Spirulina. Nutr Rep Int 1988; 37 : 1329-37.   Back to cited text no. 17
    
18.Davis SN, Granner DK. Insulin, oral hypoglycemic agents, and the pharmacology of endocrine pancreas. In: Hardman JG, Limberd LE, Malinoff PB, Ruddon RW, Gilman AG, editors. Goodman and Gilman's the pharmacological basis of therapeutics, 9 th ed. New York: McGraw Hill;1996. p. 1487-518.  Back to cited text no. 18
    
19.Kataoka N, Misaki A. Glycolipid isolated from Spirulina maxima: structure and fatty acid composition. Agricul Biol Chem 1983; 47 : 2349-55.  Back to cited text no. 19
    
20.Takai Y. Effect of water soluble and insoluble fractions of Spirulina over serum lipids and glucose resistance of rats. J Jpn Soc Nutr Food Sci 1991; 44 : 273-7.  Back to cited text no. 20
    
21.Mani S, Iyer UM, Subramanian S. Studies on the effect of Spirulina supplementation in control of diabetes mellitus. In: Subramanian G, editor. Cyanobacterial biotechnology. USA: Science Publishers Inc; 1998. p. 301-4.  Back to cited text no. 21
    
22.Layam A, Chandra L, Reddy K. Antidiabetic property of Spirulina. Diabet Croatica 2006; 35 : 29-33.  Back to cited text no. 22
    
23.Mani UV, Iyer UM, Nayak US. Hypocholesterolemic effect of Spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 2002; 5 : 91-6.  Back to cited text no. 23
    
24.Mani UV, Desai S, Iyer UM. Studies on long term effect of Spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceut 2000; 2 : 25-32.  Back to cited text no. 24
    
25.Nassir F, Mazur A, Felgines C, Rayssiguier Y. Age related response to dietary fructose in the rat: discrepancies in triglyceride and apolipoprotein B synthesis as a possible mechanism for fatty liver induction in adult rat. Proc Soc Exp Biol Med 1993; 204 : 180-3.  Back to cited text no. 25
    
26.Rodriguez-Hernandez A, Ble-Castillo JL, Juarez-oropeza MA, Diaz-Zagoya JC. Spirulina maxima prevent fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci 2001; 69 : 1029-37.  Back to cited text no. 26
    
27.Hosoyamada. Y, Takai T, Kato T. Effects of water-soluble and insoluble fractions of Spirulina on serum lipid components and glucose tolerance in rats. J Jpn Soc Nutr Food Sci 1991; 44 : 273-7.  Back to cited text no. 27
    
28.de Caire GZ, De Cano MS, de Mule MZ, Steyerthal N, Piantanida M. Effect of Spirulina platensis on glucose, uric acid and cholesterol levels in the blood of rodents. Int J Exp Bot 1995; 57 : 93-6.  Back to cited text no. 28
    
29.Ramamoorthy A, Premakumari S. Effect of supplementation of Spirulina on hypercholesterolemic patients. J Food Sci Technol 1996; 33 : 124-8.  Back to cited text no. 29
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7]



 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Material & M...
   Results
   Discussion
   Acknowledgment
    References
    Article Figures

 Article Access Statistics
    Viewed1135    
    Printed42    
    Emailed0    
    PDF Downloaded393    
    Comments [Add]    

Recommend this journal