Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 3378       
Year : 2011  |  Volume : 134  |  Issue : 1  |  Page : 113-117

Event related potential (ERP) P300 after 6 months residence at 4115 meter

Department of Physiology, Defence Institute of Physiology & Allied Sciences, (Defence Research & Development Organisation), Delhi, India

Correspondence Address:
Lalan Thakur
Neurophysiology Division, Department of Physiology, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research & Development Organisation, Lucknow Road, Timarpur, Delhi 110 054
Login to access the Email id

Source of Support: None, Conflict of Interest: None

PMID: 21808143

Rights and PermissionsRights and Permissions

Background & objectives: The P300 wave is an event related potential (ERP) elicited by infrequent, task-relevant stimuli and appeared at about 300 ms, represents higher cognitive function of information processing, working memory or stimulus categorization. Hypobaric hypoxia deteriorates the cognitive function during the short term stay (days to few weeks) at high altitude. The present study was carried out to evaluate the P300 responses during long duration stay (1 month and 6 months) at high altitude (HA, 4115 m) in a sample of Indian lowlanders. Methods: The study was carried out on 18 healthy male volunteers at sea level (SL). The volunteers were stage inducted to 4115 m altitude in the Eastern Himalayas. The P300 was recorded after 1 and 6 months of their stay at HA. Results: The latencies of peaks N100, P200 and N200 waves did not show any significant changes after 1 and 6 months of stay at HA as compared to SL. The P300 latency was significantly delayed after 1 month and further delayed after 6 month of residence at 4115 m. The P200 and P300 amplitudes did not show any changes. Interpretation & conclusions: The increase in P300 latency indicated that long duration of stay at high altitude slows the stimulus evaluation processes. The observations suggest that hypoxia causes slowing of the signal processing at HA. The magnitude of the effects of hypobaric hypoxia may be dependent upon the duration of residence at high altitude.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded224    
    Comments [Add]    

Recommend this journal