Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1603       

   Table of Contents      
COMMENTARY
Year : 2011  |  Volume : 133  |  Issue : 1  |  Page : 11-13

Management of chronic hepatitis B patients: Efficacy & limitation of nucleos(t)ide analogues


Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan

Date of Web Publication7-Apr-2011

Correspondence Address:
Jun Inoue
Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba-ku, Sendai 980-8574
Japan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 21321415

Rights and PermissionsRights and Permissions

How to cite this article:
Inoue J, Ueno Y, Shimosegawa T. Management of chronic hepatitis B patients: Efficacy & limitation of nucleos(t)ide analogues. Indian J Med Res 2011;133:11-3

How to cite this URL:
Inoue J, Ueno Y, Shimosegawa T. Management of chronic hepatitis B patients: Efficacy & limitation of nucleos(t)ide analogues. Indian J Med Res [serial online] 2011 [cited 2020 Sep 26];133:11-3. Available from: http://www.ijmr.org.in/text.asp?2011/133/1/11/76698

Hepatitis B virus (HBV) causes a spectrum of liver diseases including acute hepatitis, chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV contains a circular, partially double-stranded DNA genome of 3.2 kb. This genome includes 4 partly overlapping open reading frames. One of these is the polymerase gene that encodes for the polymerase protein including the reverse transcriptase (RT) region. In the process of HBV replication, the pregenomic RNA, which is transcribed from covalently closed circular DNA (cccDNA), is reverse-transcribed by the polymerase protein of HBV. This step is mainly targeted by nucleos(t)ide analogues such as lamivudine, adefovir, entecavir, tenofovir, and telbivudine. Oral administration of these drugs results in virological, biochemical, and histological improvement in most patients [1] , but the effect is often transient due to the emergence of drug-resistant mutants of HBV.

In this issue, Kumar et al[2] performed a randomized pilot study to compare lamivudine and adefovir in terms of the HBV kinetics. To our knowledge, this is the first report of a randomized study comparing these drugs, and hence valuable. Based on several previous studies, it was thought that adefovir has weaker suppressive effect on serum HBV DNA than other nucleos(t)ide analogues including lamivudine [3],[4] : the virological response (undetectable HBV DNA) rate of adefovir at 1 year was 21 per cent, and that of lamivudine was 39-44 per cent. However, this 24-wk study showed no significant difference in virological, biological, and histological responses between adefovir and lamivudine. A recent meta-analysis, which compared 48-52-wk outcomes of several antiviral drugs to HBV, demonstrated that there was no significant difference in outcomes between adefovir and lamivudine in both HBeAg-positive and HBeAg-negative patients [5] . Therefore, the results of Kumar et al[2] seem to be reasonable. The sample size however is small and the treatment duration was short, as they described. A larger samples is needed to reach a conclusion, and analyses should be performed in view of the HBeAg status and HBV genotypes, which are known to affect the efficacy of anti-viral drugs [6] .

The monotherapy of lamivudine or adefovir is associated with the highly frequent emergence of drug-resistant mutations after long treatment (70 and 29% at year 5, respectively [3] ), and present American Association for the s0 tudy of Liver d0 iseases (AASLD) [4] and European Association for the s0 tudy of the Liver (EASL) [3] guidelines do not recommend these drugs for treatment-naïve patients. For these patients, entecavir or tenofovir are potent and rarely result in drug-resistant mutants (1.2% at year 5 and 0% at year 1, respectively [3] ), and long-term continuation of the drugs without drug resistance has become possible for most patients. As long-term administration of these drugs can be an economic burden for a substantial number of patients, both the cost and efficacy should be considered in the choice of drugs. The replacement of methionine at amino acid 204 to valine or isoleucine (rtM204V/I) within the tyrosine-methionine-aspartate-aspartate (YMDD) motif in the reverse transcriptase region of HBV polymerase is found in most lamivudine-resistant patients. The management of these patients is still a major problem. Previous in vitro studies demonstrated that adefovir and entecavir have a suppressive effect on lamivudine-resistant mutants [7] . A combination therapy of lamivudine and adefovir is found superior to adefovir monotherapy for lamivudine-resistant patients [8] . Because a pre-existing YMDD mutation predisposes the emergence of entecavir resistance [7] , entecavir monotherapy is less attractive for lamivudine-resistant patients.

Because HBV polymerase lacks a conventional proofreading function, the mutation rate of HBV is much higher than other DNA viruses. Naturally-occurring HBV mutations are reported to affect the disease outcome, including cirrhosis, hepatocellular carcinoma, and fulminant hepatitis [9] . Drug-resistant mutations can occur in treatment-naïve patients and, interestingly, recent reports from Japan [10] and China [11] described that drug-resistant mutants were found in acute hepatitis B patients (4 and 7%, respectively). Although the drug-resistant mutants are in general thought to have less replication capacity than the wild type, the mutants are transmissible.

Although nucleos(t)ide analogues effectively decrease HBV DNA in serum, cccDNA may not be eliminated in the liver. If the treatment is discontinued halfway, it can be a template for HBV replication. Intrahepatic HBV DNA persists even in patients who have lost serum HBsAg [12] . The amount of cccDNA can be decreased by antiviral drugs, and the degree of reduction was reported to predict the sustained response to therapy [13] . Kumar et al[2] quantified intrahepatic HBV DNA at the start and end of 6-months therapy, but not cccDNA. The intrahepatic HBV DNA includes cccDNA and other forms of HBV DNA such as single-stranded DNA, double-stranded linear DNA, and relaxed circular DNA. Because it was reported that there was a correlation between the level of intrahepatic HBV DNA and cccDNA [13] , the reduction of intrahepatic HBV DNA in this study might also demonstrate a reduction of cccDNA. The investigation of agents that eliminate cccDNA in the liver is a great challenge in HBV research.

One of the problems in the treatment of chronic HBV infection is the lack of clearly defined end points. The loss of HBsAg is thought to be the best end point clinically, but it rarely occurs. The level of hepatitis B core-related antigen (HBcrAg) in the serum, which is associated with the level of intrahepatic cccDNA, was described as predicting a sustained response [14] . The seroconversion of HBeAg has been thought to be one of the major signs of effective suppression of HBV for HBeAg-positive patients. However, Reijnders et al[15] reported recently that the seroconversion induced by nucleos(t)ide analogues was transient in most cases. They described that the long-term continuation of these drugs, irrespective of the occurence of HBeAg seroconversion, appears to be necessary. The end points of the therapies have to be discussed further.

The development of antiviral agents for HBV has progressed successfully, and currently there are many therapeutic options. Interferon-a and pegylated interferon-a can be effective, although the details are not described here. However, at present, there is no therapy that can eradicate HBV completely. There is increasing evidence that profound, durable therapeutic suppression of HBV DNA results in slowing and reversing the progression of chronic HBV infection. Once the drug-resistant mutations occur, the management of patients become difficult. Therefore, more potent and less resistance-prone antiviral drugs are needed for the initial therapy. There is a possibility that more effective drugs or combination therapies, which can reduce intrahepatic cccDNA effectively, will be able to shorten the therapy period in the future.

 
   References Top

1.Lai CL, Chien RN, Leung NW, Chang TT, Guan R, Tai DI, et al. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 1998; 339 : 61-8.  Back to cited text no. 1
    
2.Kumar SP, Medhi S, Asim M, Das BC, Gondal R, Kar P. Evaluation of adefovir & lamivudine in chronic hepatitis B: correlation with HBV viral kinetics, hepatic-necro inflammation & fibrosis. Indian J Med Res 2011; 133 : 50-6.  Back to cited text no. 2
    
3.European Association for the s0 tudy of the Liver. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol 2009; 50 : 227-42.  Back to cited text no. 3
    
4.Lok AS, McMahon BJ. Chronic hepatitis B: update 2009. Hepatology 2009; 50 : 661-2.  Back to cited text no. 4
    
5.Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, Wong DK, et al. Tenofovir and entecavir are the most effective antiviral agents for chronic hepatitis B: A systematic review and Bayesian Meta-Analyses. Gastroenterology 2010; 139 : 1218-29.  Back to cited text no. 5
    
6.Inoue J, Ueno Y, Wakui Y, Niitsuma H, Fukushima K, Yamagiwa Y, et al. Four-year study of lamivudine and adefovir combination therapy in lamivudine-resistant hepatitis B patients: influence of hepatitis B virus genotype and resistance mutation pattern. J Viral Hepat 2011 (in press).  Back to cited text no. 6
    
7.Tenney DJ, Levine SM, Rose RE, Walsh AW, Weinheimer SP, Discotto L, et al. Clinical emergence of entecavir-resistant hepatitis B virus requires additional substitutions in virus already resistant to lamivudine. Antimicrob Agents Chemother 2004; 48 : 3498-507.  Back to cited text no. 7
    
8.Rapti I, Dimou E, Mitsoula P, Hadziyannis SJ. Adding-on versus switching-to adefovir therapy in lamivudine-resistant HBeAg-negative chronic hepatitis B. Hepatology 2007; 45 : 307-13.  Back to cited text no. 8
    
9.Inoue J, Ueno Y, Nagasaki F, Wakui Y, Kondo Y, Fukushima K, et al. Enhanced intracellular retention of a hepatitis B virus strain associated with fulminant hepatitis. Virology 2009; 395 : 202-9.  Back to cited text no. 9
    
10.Hayashi K, Katano Y, Ishigami M, Itoh A, Hirooka Y, Nakano I, et al. Prevalence and clinical characterization of patients with acute hepatitis B induced by lamivudine-resistant strains. J Gastroenterol Hepatol 2010; 25 : 745-9.  Back to cited text no. 10
    
11.Xu Z, Liu Y, Xu T, Chen L, Si L, Wang Y, et al. Acute hepatitis B infection associated with drug-resistant hepatitis B virus. J Clin Virol 2010; 48 : 270-4.  Back to cited text no. 11
    
12.Kuhns M, McNamara A, Mason A, Campbell C, Perrillo R. Serum and liver hepatitis B virus DNA in chronic hepatitis B after sustained loss of surface antigen. Gastroenterology 1992; 103 : 1649-56.  Back to cited text no. 12
    
13.Sung JJ, Wong ML, Bowden S, Liew CT, Hui AY, Wong VW, et al. Intrahepatic hepatitis B virus covalently closed circular DNA can be a predictor of sustained response to therapy. Gastroenterology 2005; 128 : 1890-7.  Back to cited text no. 13
    
14.Shinkai N, Tanaka Y, Orito E, Ito K, Ohno T, Hirashima N, et al. Measurement of hepatitis B virus core-related antigen as predicting factor for relapse after cessation of lamivudine therapy for chronic hepatitis B virus infection. Hepatol Res 2006; 36 : 272-6.  Back to cited text no. 14
    
15.Reijnders JG, Perquin MJ, Zhang N, Hansen BE, Janssen HL. Nucleos(t)ide analogues only induce temporary hepatitis B e antigen seroconversion in most patients with chronic hepatitis B. Gastroenterology 2010; 139 : 491-8.  Back to cited text no. 15
    




 

Top
 
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    References

 Article Access Statistics
    Viewed740    
    Printed60    
    Emailed0    
    PDF Downloaded205    
    Comments [Add]    

Recommend this journal