Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research Indan Journal of Medical Research
  Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login  
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 1214       
REVIEW ARTICLE
Year : 2008  |  Volume : 128  |  Issue : 1  |  Page : 13-21

Targeting protein acetylation for improving cancer therapy


1 Institute of Nuclear Medicine & Allied Sciences, University of Delhi, Delhi, India
2 Department of Chemistry, University of Delhi, Delhi, India
3 V.P. Chest Institute, University of Delhi, Delhi, India

Correspondence Address:
B S Dwarakanath
Institute of Nuclear Medicine & Allied Sciences, University of Delhi, Delhi, India

Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 18820353

Rights and PermissionsRights and Permissions

Acetylation is one of the most important post-translational modification of proteins determining the structure, function and intracellular localization that plays an important role in the signal transduction pathways related to diverse cell functions, both during unstimulated and stress conditions. Protein acetylation in cells is regulated by a co-ordinated action of histone acetyl transferases (HAT) and histone deacetylases(HDAC) that ensures the maintenance of homeostasis and execution of activities related to damage response viz. DNA repair, cell cycle delay, apoptosis and senescence. Since inhibition of histone deacetylation, stalls the progress of many nuclear events including proliferation and damage response events on the one hand and the levels of deacetylases are elevated in many tumours on the other. Histone deacetylase has been among the targets for the development of anticancer drugs and adjuvant. The recent observation showing acetylation of proteins by calreticulin (an endoplasmic reticulum resident protein) with a high efficiency when polyphenolic acetates are the acetyl group donating molecules and acetyl CoA as weak substrate extends the realm of protein acetylation beyond HAT/HDAC combination. Elucidation of the relative roles of HAT/HDAC mediated acetylation viz. a calreticulin mediated acetylation in cell function under a variety of stress conditions would hold key to the design of drugs targeting protein acetylation system.


[PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed179    
    Printed15    
    Emailed0    
    PDF Downloaded86    
    Comments [Add]    

Recommend this journal